期刊文献+

适用于移动接触的一种协调离散的边界单元

A conforming discretization boundary element for moving contact problems
下载PDF
导出
摘要 对二维弹性体移动接触问题提出了一种采用协调离散插值的方案 ,在小应变假设的前提下它能保持边界无法的优良特性 .接触区的位移和面力边界条件均能在离散意义下精确满足 .文中给出了一些算例来验证所提出算法的有效性和高精度 . In this thesis, a scheme for moving contact of 2D elastic bodies using conforming discretization is presented, which preserves the good characteristics of BEM, under the assumption of small strain. Both the displacement and the traction boundary conditions are satisfied on the contacted region in the sense of discretization. Some numerical examples are given to show the effectieness and higher accuracy of the presented schemes.
出处 《天津理工学院学报》 2001年第3期7-10,共4页 Journal of Tianjin Institute of Technology
基金 国家自然科学基金资助项目 (1990 2 0 0 1)
关键词 边界元法 协调离散 二维弹性体 移动接触 弹性接触问题 边界单元 boundary element method contact conforming discretization
  • 相关文献

参考文献6

  • 1[1]Bathe K J,Chaudhary A.A solution method for planar and axisymmetric contact problems[J].Int J Numer Meth Engng.,1985,21:65-88.
  • 2[2]Olukoko O A,Becker A A,Fenner R T.A new boundary element approach for contact problems with friction[J].Int J Numer Meth Engng.,1993,36:2625-2642.
  • 3[3]Andersson T,Fredriksson B, Persson B G A. The boundary element method applied to two-dimensional contact problems[A].In developments in boundary element methods.Proc.second international conference on recent advances in boundary element methods[C].Southampton,C.A.Brebbia(Ed.),CML Publication,1980.247-263.
  • 4[4]Abdul-Mihsein M J,Bakr A A,Praker A P.A boundary intefral equation method for axisymmetric elastic contact problems[J].Computers Structures,1986,23(6):787-793.
  • 5[5]Paris F,Blazquez A,Canas J.Comntact problems with nonconforming discretizations using boundary element lethod[J].Computers Structures,1995,57(5):829-839.
  • 6[6]Blazquez A,Paris F,Canas J.Interpretation of the problems found in applying contact conditions in node-to-point schemes with boundary element non-comforming discretizations[J].Int J Engng.Anal Boundary Elements,1998,21:361-375.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部