期刊文献+

具有干扰解耦能力的鲁棒在线故障诊断 被引量:1

Robust On-Line Fault Detection with Disturbance Decoupling Ability
下载PDF
导出
摘要 针对一类带有未知输入干扰和模型不确定性系统 ,提出了一种新型鲁棒在线故障诊断方法 .该方法综合应用带有未知输入状态观测器技术和 RBF神经网络的在线建模能力 ,利用状态观测误差实时调整 RBF神经网络的权值 ,使其不但能在线实时检测、分离、估计故障信号 ,而且对未知输入干扰具有解耦能力 ,对有界模型不确定性具有鲁棒性 .给出了该方法的鲁棒性和灵敏度的分析结果 .仿真结果表明了该方法的有效性 . A new robust on-line fault detection method for systems with unknown input disturbance and model uncertainty was proposed. It uses the technology for unknown input observer design and on-line modeling ability of RBF neural network comprehensively, and by adjusting the weight of RBF neural network, it can not only real-time detect, isolate and estimate the fault signal, but also has both the ability of decoupling unknown input disturbance and the robustness to the bounded modeling uncertainty. Analysis results for robustness and sensitivity were also given. The simulation result indicates that this method is effectiveness.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2001年第9期1399-1403,1407,共6页 Journal of Shanghai Jiaotong University
关键词 故障诊断 鲁棒性 观测器 干扰解耦能力 RBF神经网络 在线实时检测 残差信号 Neural networks Online systems Robustness (control systems) Signal processing Uncertain systems
  • 相关文献

参考文献6

  • 1田树方.矩阵计算的理论与方法[M].北京大学出版社,1995..
  • 2Zhang Q,Automatica,1998年,34卷,11期,1359页
  • 3Wang Lixin,A Course in Fuzzy Systems and Control,1997年
  • 4田树方,矩阵计算的理论与方法,1995年
  • 5Darouach M,IEEE Trans Automatic Control,1994年,39卷,3期,606页
  • 6Hou M,IEEE Transaction Automatic Control,1992年,37卷,3期,871页

共引文献1

同被引文献13

  • 1Gandhi A, Corrigan T, Parsa L. Recent advances in modeling and online detection of stator interturn faults in electrical motorsEJ]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1564-1575.
  • 2Emami-Naeini A, Akhter M M, Rock S M. Effect of model uncertainty on failure detection., the threshold selectorEJ]. IEEE Transactions on Automatic Con- trol, 1988, 33(12).. 1106-1115.
  • 3Esna Ashari A, Nikoukhah R, Campbell S L. Active robust fault detection in closed-loop systems: quadratic optimization appr0ach~J3. IEEE Transac- tions on Automatic Control, 2012, 57 (10) : 2532- 2544.
  • 4Esna Ashari A, Nikoukhah R, Campbell S L. Auxi- liary signal design {or robust active {ault detection of linear discrete-time systemsEJ3. Automatica, 2011, 47(9) : 1887-1895.
  • 5Chai Wei, Qiao Junfei. Passive robust fault detection using RBF neural modeling based on set membership identification[J]. Engineering Applications of Arti- ficial Intelligence, 20 I4, 28 : 1-12.
  • 6Jiang J, Yu X. Fault-tolerant control systems.. A comparative study between active and passive approa- ches[J]. Annual Reviews in Control, 2012, 36(1): 60-72.
  • 7Reppa V, Tzes A. Fault detection and diagnosis based on parameter set estimation[J]. IET Control Theory ~ Applications, 2011, 5(1).. 69-83.
  • 8Blesa J, Puig V, Saludes J. Robust fault detection using polytope-based set-membership consistency test [J]. IET Control Theory ~y~ Applications, 2012, 6 (12) .. 1767-1777.
  • 9Blesa J, Puig V, Saludes J. Identification for passive robust fault detection using zonotope-based set- membership approachesEJ]. International Journal of Adaptive Control and Signal Processing, 2011, 25 (9) : 788-812.
  • 10Tornil-Sin S, Ocampo-Martinez C, Puig V, et al. Robust fault diagnosis of nonlinear systems using interval constraint satisfaction and analytical redun- dancy relations[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44 (1) : 18- 29.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部