摘要
本文考虑方程(x(t) - cx(t- 2 [(t+1) /2 ]) )′+p(t) x(t) +r(t) x(t- 2 [(t+1) /2 ]) ) +q(t) x(2 [(t+1) /2 ]=0(a)和方程(x(t) - cx(t- [t]) )′=a(t) x(t) +b(t) x(t- [t]) +p(t) x ([t+1]) (b)解的振动性质 ,得到方程 (a)和 (b)
We study oscillatory properties of equations (x(t)-cx(t-2))′+p(t)x(t)+r(t)x(t-2)+q(t)x()=0(a) and (x(t)-cx(t-))′=a(t)x(t)+b(t)x(t-)+p(t)x()(b) We have obtained sufficient conditions under which equation (a) or (b) has oscillatory solution.
出处
《数学理论与应用》
2001年第2期56-61,共6页
Mathematical Theory and Applications
关键词
分段常变元
振动性
解
中立型
泛函微分方程
Functional differential equation
piecewise constant argument
oscillation
solution.