摘要
本文证明了形如a(x^2+3y^2)+bz^2(0<3a≤b)的实二次型在整数环上等价的充分必要条件为:对变元的整数值,表数相同。
In this paper,let f and F to be two positive definite real ternaryquadratic forms of the type α(x^2+3y^2)+bz^2(0<3α<b).Then,the formsf and F represent the same numbers for all integral values of theirvariables if and only if f is identical with F.
出处
《兰州铁道学院学报》
1991年第2期1-6,共6页
Journal of Lanzhou Railway University
关键词
实二次型
表数相同
等价
数论
real ternary quadratic forms
represent same numbers
identical