摘要
本文从Plya和Szego定理出发,得到了整系数多项式的不可约性的一个结果,其特点是对于Plya和Szeg定理中的多项式f(x)的系数所表示的整数b的下界要求的更小。利用这个结果可以证明Plya和Szeg定理的一个有趣的特例即本文的推论。
In this paper an irreducibility result is obtained, whith was derived from theorem of Plya and Szeg. The new feature in this result is the lower bound for the integer b in theorem of Pólya and Szeg which is computed from the coeffcient of f(x). This theorem is then used to prove an interesting example about theorem of Plya and Szeg that is corollary in this paper.
出处
《兰州铁道学院学报》
1991年第3期75-81,共7页
Journal of Lanzhou Railway University
关键词
素数
整系数多项式
不可约
prime
polynomial with intergral coeffcient
irreducibility