期刊文献+

基于动态时间错位的多元批次轨迹同步化 被引量:6

Synchronization of Multivariate Trajectories Based on Dynamic Time Warping
下载PDF
导出
摘要 动态时间错位 (Dynamictimewarping)是一种灵活的、定常的模式匹配方案 ,它是基于动态规划理论提出的 ,能使模式内的相似特征合理匹配 ,它已在语音识别领域得到了成功的应用。笔者将动态时间错位 (DTW )的理论运用于分析和处理间歇反应过程中批次轨迹不同步的问题。在间歇反应过程中 ,由于批次与批次之间受物理特性和约束的影响 ,批次轨迹常具有持续时间不同步的特点。如果要用统计的方法分析和比较两个批次轨迹的数据特征 ,必须使两个批次的持续时间长度保持一致。动态时间错位 (DTW )理论可适时转换、扩张或压缩两个批次轨迹的局部模式特征 。 Dynamic time warping (DTW) is a flexible pattern matching method. Based on dynamic programming, this technique can reconcile similar characteristics of two trajectories, and has been used in the area of speech recognition successfully. This paper discusses the application of dynamic time warping (DTW) to the analysis and disposal of unsynchronized trajectories of batch processes. In batch process, due to the presence of batch batch disturbances and existence of physical constraints, batch processes are often characterized by unsynchronized trajectories. To compare these batch histories and apply statistical analysis, one needs to reconcile the timing difference among these histories first. Dynamic time warping (DTW) has the ability to synchronize two trajectories by appropriately translating, expanding, and contracting localized segments within both trajectories to achieve a minimum distance between the trajectories and optimal path, then synchronize two trajectories.
作者 李元 王纲
机构地区 沈阳化工学院
出处 《上海海运学院学报》 北大核心 2001年第3期217-221,共5页 Journal of Shanghai Maritime University
关键词 动态时间错位 模式匹配 最优路径 点序列 多元批次轨迹 同步化 DTW 动态规划理论 dynamic time warping, pattern matching, optimal path, point sequence
  • 相关文献

参考文献1

二级参考文献5

共引文献4

同被引文献49

  • 1徐波,唐海龙,李行善.基于DTW的涡扇发动机气路故障定量诊断方法[J].北京航空航天大学学报,2004,30(6):524-528. 被引量:10
  • 2吴晓平,崔光照,路康.基于DTW算法的语音识别系统实现[J].电子工程师,2004,30(7):17-19. 被引量:18
  • 3[1]Valle S, LI Wei-hua , Qin S J. Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods[J]. Ind Eng Chem Res, 1999, 38.. 4389-4401.
  • 4[2]Dunia R, Qin S J. A unified geometric approach to process and sensor fault identification and reconstruction: the unidimensional fault case[J]. Computers Chem Engng, 1998, 22(7-8):927-943.
  • 5Nomikos P, MacGregor J F. Monitoring Batch Process Using Multi-way Principle Component Analysis[ J ]. AICHE J, 1994,40(8) :1361-1375.
  • 6Nomikos P, MacGregor J F. Multi-way Partial Least Squares in Monitoring Batch Processes [ J ]. Chemom Intell Lab Syst, 1995,30:97-108.
  • 7Nomikos P, MacGregor J F. Multivariable SPC Charts for Monitoring Batch Process[J]. Technometrics, 1995,37(1) :41-59.
  • 8Qin S J, Duina R. Determining the Number of Principal Components for Best Reconstruction [ J ]. J of Process Control,2000,10(2 -3) :245-250.
  • 9GAO Xiang, WANG Gang, LI Yuan, MA Ji-hu. Multivariate Statistical Process Monitoring Based on Synchronization of Trajectories Using DTW[ A ]. 4th IFAC Workshop on On-line Fault Detection and Supervision in the Chemical Process Industries (Chemas-4 ) [ C ]. 2001,383-387.
  • 10Dahl K S, Piovoso M J, Kosanovich K A. Translating Third-order Data Analysis Methods to Chemical Batch Processes[J]. Chemom Intell Lab Syst, 1999,46 : 161-180.

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部