期刊文献+

疲劳寿命服从威布尔分布时保证综合存活率的一种方法 被引量:1

METHOD TO ENSURE COMPREHENSIVE SURVIVAL PROBABILITY WHEN FATIGUE LIVES FIT WEIBULL DISTRIBUTION
下载PDF
导出
摘要 针对产品疲劳寿命服从威布尔分布的情况 ,提出基于假设检验思想的综合存活率保证方法和安全系数确定方法 ,推导了相应的计算公式。该方法的特点是基于假设检验概念 ,充分利用已有的信息 ,弥补了当次分析数据的不足 。 Many Chinese engineers are interested in studying the method to ensure the comprehensive survival probability of total serial products. We now present our preliminary study on one aspect of this important problem. In order to make full use of the data of the previous sample tests, we put forward the new method based on the idea of hypothesis test, which not only can ensure the comprehensive survival probability (also called comprehensive reliability) of total serial products, but also overcome the lack of the data from one sample test. We derived the relevant formulae when the distribution functions of fatigue life of serial products fit Weibull distribution, and defined the new safe factor St* based on the idea of hypothesis test. Compared with the traditional safe factor St obtained from the concept of parameter estimation, the St* is much closer to the actual statistical value. We considered the succession of practical products and emphasized to use the information of the previous sample tests for ensuring the comprehensive survival probability of total serial products in this paper. The results of an example show that our new method is effective.
出处 《机械强度》 EI CAS CSCD 北大核心 2001年第3期290-292,共3页 Journal of Mechanical Strength
基金 国家航空科学基金资助项目 (97B530 1 5) 西北工业大学科研启动费资助课题~~
关键词 威布尔分布 假设检验 综合存活率 安全系数 机械产品 疲劳寿命 Weibull distribution Hypothesis test Comprehensive survival probability Safe factor
  • 相关文献

参考文献7

  • 1崔卫民.结构高可靠性子样试验若干统计推断问题(博士学位论文)[M].西安:西北工业大学,1998.15-38.
  • 2浙江大学数学系高等数学教研室.概率论与数理统计[M].北京:高等教育出版社,1984..
  • 3Emeritus.统计数值表(日文)[M].东京:日本标准协会出版社,1972.222-252.
  • 4崔卫民,博士学位论文,1998年,15页
  • 5中国航空科学技术研究院,飞机结构可靠性分析与设计指南,1995年,153页
  • 6林富甲,结构可靠性,1991年,57页
  • 7浙江大学数学系高等数学教研组,概率论与数理统计,1984年

同被引文献11

  • 1王桂芝,陈纪波.部分追加试验与拟水平试验的设计[J].统计与决策,2005,21(02X):126-127. 被引量:4
  • 2高旅端,陈志.不完全数据下Weibull分布参数的估计[J].数理统计与应用概率,1995,10(3):83-89. 被引量:10
  • 3卢小艳,陆山.基于威布尔分布k故障试验的寿命可靠性评估[J].机械设计与研究,2005,21(6):10-12. 被引量:11
  • 4喻天翔,宋笔锋,冯蕴文.基于Dirichlet先验分布的Bayes二项可靠性增长方法[J].系统工程理论与实践,2006,26(1):131-135. 被引量:7
  • 5Chiranjit M,AsitP.Bayeaian Analysis of Incomplete Time and Cause of Failure Data[J].Joumal of Statistical Planning and inference. 1997,5(1): 79-100.
  • 6Kevin J.On the Use and Utility of the Weibull Model in the Analysis of Survival Data[J].Controlled Clinical Trials,2003,24(4): 682-701.
  • 7Ageel M I.A Novel Means of Estimating Quantiles for 2-parameter Weibull Distribution under the Right Random Censoring Model[J].Journal of Computational and Applied Mathematics,2002, 149(3): 373-380.
  • 8Calabria R,PulciniG.An Engineering Approach to Bayes Estimation for the Weibull Distributionr [J].Mieroelection Reliab,1994, 34(5): 789-802.
  • 9Erto P.New Practical B ayes Estimations for the 2-Parameter Weibull Distribution[J].IEEE Trims Reliability,1982,31(2): 194-197.
  • 10Dempster A.Laird N,Rubin D.Maxinmm Likelihood from in Complete Data Via the EM Algorithm[J].J.R,Statist Soc,1977,39(1): 1-38.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部