期刊文献+

一类两环境状态S-W BPRE灭绝概率的精确等价函数

About the Exact Equivalent Function of Extinction Probability in Some Two Environment States Smith-Wilkinson BPRE
下载PDF
导出
摘要 目的 探讨具有分式线性概率母函数两环境状态 Smith-Wilkinson BPRE灭绝概率的渐近估计 .方法 利用分式线性概率母函数的特性 ,通过对偶过程的函数变换 ,并借助了特征函数、积分技巧以及极限和概率的方法 .结果 求得了灭绝概率 qk的精确等价函数 .结论 特殊情况下 ,灭绝概率 qk的等价函数可由关于 Aim: To study the asympototic estimation for extinction probability in two environment states Smith-Wilkinson BPRE with fractional linear probability generating function. Methods: By means of the characteristics of fractional linear probability generating function, through the function transformation for dual process, the method of characteristic function, the skill of integration and the methods of limitation and probability are used. Results: The exact equivalent function of extinction probability in some two environment states Smith-Wilkinson BPRE with fractional linear probablity generating function is obtained. Conclusion: In some particular case, the equivalent function of qk, the extinction probability, can be exactly expressed by an elementary function about k without any unknown parameter.
出处 《华北工学院学报》 EI CAS 2001年第5期319-322,共4页 Journal of North China Institute of Technology
基金 山西省回国留学人员科研基金项目
关键词 随机环境分枝过程 Smith-WilkinsonBPRE 灭绝概率 对偶过程 分式线性概率母函数 branching process in random environment Smith Wilkinson BPRE extinction probability dual process fractional linear probability generating function
  • 相关文献

参考文献4

  • 1Smith W L,Wilkinson W E.On branching processes in random environments[].The Annals of Mathematical Statistics.1969
  • 2Wilkinson W E.On calculating extinction probabilities for branching processes in random environments[].Journal of Applied Probability.1969
  • 3Keiding N,Nielson J E.Branching processes with varying and random geometric offspring distributions[].Journal of Applied Probability.1975
  • 4Grey D R,Lu Z.The asympototic behaviour of extinction probability in the Smith-Wilkinson branching process[].Advances in Applied Mechanics.1993

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部