摘要
研究了一类二阶非线性泛函微分方程 (r(t)Ψ (x(t) )x′(t) )′ +q(t)f(x′(t) ,x(τ(t) ) ) +h(t)g(x(t) ) =0解的振动性 ,给出了其解振动的几个新的充分条件。
This paper studies the oscillatory behavior of solutions of a class of second order nonlinear functional differential equation (r(t)φ(x(t))x′(t))′+q(t)f(x′(t),x(τ(t)))+h(t)g(x(t))=0,t≥t o>0, new sufficient conditions are obtained.
出处
《东北电力学院学报》
2001年第3期34-37,共4页
Journal of Northeast China Institute of Electric Power Engineering
关键词
非线性泛函微分方程
振动性
最终正解
Nonlinear functional differential equation
Oscillation
Eventually positive solution