期刊文献+

二阶非线性泛函微分方程解的振动性

On Oscillation of Second Order Nonlinear Functional Differential Equation
下载PDF
导出
摘要 研究了一类二阶非线性泛函微分方程 (r(t)Ψ (x(t) )x′(t) )′ +q(t)f(x′(t) ,x(τ(t) ) ) +h(t)g(x(t) ) =0解的振动性 ,给出了其解振动的几个新的充分条件。 This paper studies the oscillatory behavior of solutions of a class of second order nonlinear functional differential equation (r(t)φ(x(t))x′(t))′+q(t)f(x′(t),x(τ(t)))+h(t)g(x(t))=0,t≥t o>0, new sufficient conditions are obtained.
机构地区 南华大学数理部
出处 《东北电力学院学报》 2001年第3期34-37,共4页 Journal of Northeast China Institute of Electric Power Engineering
关键词 非线性泛函微分方程 振动性 最终正解 Nonlinear functional differential equation Oscillation Eventually positive solution
  • 相关文献

参考文献1

二级参考文献5

  • 1[1]Rogovchenko Y. V., Oscillation Criteria for Certain Nonlinear Differential Equations [J], J. Math. Anal.Appl., 1999, 229(2): 399-416.
  • 2[2]Hameclani G. G., Krenz G. S., Oscillation Criteria for Certain Second Order Differential Equations [J], J.Math. Anal. Appl., 1990, 149(1): 271-276.
  • 3[3]Grace S. R., Lalli B. S., An Oscillation Criterion for Certain Second Order Strongly Sublinear Differential Equations [J], J. Math. Anal. Appl., 1987, 123(2): 584-588.
  • 4[4]Philos Ch G., Oscillation Theorems for Linear Differential Equations of Second Order [J], Arch. Math.(Basel), 1989, 53(5): 482-492.
  • 5[5]Erbe L., Oscillation Criteria for Second Order Nonlinear Delay Equations [J], Canad Math. Bull., 1973,16(1): 49-56.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部