期刊文献+

完全非线性微分方程周期粘性解的存在唯一性和正则性 被引量:3

THE EXISTENCE, UNIQUENESS AND REGULARLTY OF PERIODIC VISCOSITY SOLUTIONS FOR FULLY NONLINEAR DIFFERENTIAL EQUATIONS
下载PDF
导出
摘要 证明一阶完全非线性微分方程 F( t,u,u′) The existence, uniqueness and almost everywhere differentiable regularity of periodic viscosity solutions have been established for fully nonlinear differential equations:F(t,u,u′)=0 under some natural structural conditions.
作者 臧子龙
出处 《甘肃科学学报》 2001年第3期11-14,共4页 Journal of Gansu Sciences
基金 国家自然科学基金资助项目 (1 95 0 1 0 0 7)
关键词 完全非线性微分方程 周期粘性解 存在唯一性 正则性 广义周期解 可微性 nonlinear differential equation periodic viscosity existence uniqueness
  • 引文网络
  • 相关文献

同被引文献33

  • 1中国科学院力学研究所.夹层板壳的弯曲、稳定和振动[M].北京:科学出版社,1977..
  • 2Constantin A. A Note on a Second-order Nonlinear Differential System[J]. Glasgow Math J, 2000, (42):195-199.
  • 3Qian C. On Global Asymptotic Stability of Second Order Nonlinear Differential Systems [J]. Nonlinear Anal TMA,1994, (22):823-833.
  • 4Sansone G, Conti R. Nonlinear Differential Equations[M].New York: Pergmon Press, 1994.
  • 5Zhang Z F. Qualitative Theory of Ordinary Differential Equations[M]. Trans Math Monogr. 101 ,Amer,Math ,Soc ,Providence, 1992.
  • 6Li D S. Blow-up Phenomena of Second-order nonlinear Differetial Equations [J]. J Math Anal Appl, 2002, (276):184-195.
  • 7Hartman P. Ordinary Differential Equations(Second edition)[M]. Birkhauser, Boston, 1982.
  • 8GKrall. Meccanica Techica Delle Vibrazioni,Parte 1:Sistemi Discrti[M]. Bologna, 1940.
  • 9Zitan A, Ortega R. Existence of Asymptotically Stable Periodic Solutions of a Forced Equation of Lienard Type[J].Nonlinear Analtma, 1994, (22):993-1003.
  • 10Mawhin J, Ward J R. Bounded Solutions of Some Second Order Nonlinear Differential Equations [J]. London Math,Soc, 1998,(58):733-747.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部