期刊文献+

二阶差分系统正解的存在性 被引量:1

EXISTENCE OF POSITIVE SOLUTIONS FOR SECOND ORDER DIFFERENCE SYSTEM
下载PDF
导出
摘要 依据 Leray- Schauder型非线性抉择对差分系统      Δ2 u( k) + f ( k,v( k) ) =0    k∈ [0 ,T]Δ2 v( k) + g( k,u( k) ) =0    k∈ [0 ,T]u( 0 ) =u( T+ 2 ) =0 =v( 0 ) =v( T+ 2 )给出了一个存在性定理 。 By using a nonlinear alternative of Leray-Schauder type,the existence of a pair of nonnegative functions to the following coupled difference system of boundary value problems Δ 2u(k)+f(k,v(k))=0\ \ \ k∈ Δ 2v(k)+g(k,u(k))=0\ \ \ k∈ u(0)=u(T+2)=0=v(0)=v(T+2) is established.
出处 《甘肃科学学报》 2001年第3期7-10,共4页 Journal of Gansu Sciences
关键词 差分系统 正解 存在性 不动点 差分方程 Leray-Schauder型非线性抉择 difference system positive solution existence nonlinear alternative fixed-point
  • 相关文献

参考文献9

  • 1[1]Agarwal R P and Lalli B S. Discrete polynomial lnterpolation, Green′s functions, Maximum principles, Error bounds and Boundary value value problems[J]. Computers Math Appl, 1993, 25(8):3~39
  • 2[2]Agarwal R P and Wong F H. Existence of positive solutions for higher order difference equations[J]. Appl Math Lett,1997, 10(5) :67~74
  • 3[3]Agarwal R P. Difference Equations and Inequalities[M]. Marcel Dekker, New York, 1992. 1~160
  • 4[4]Henderson J. Singular boundary value problems for difference equations[J]. Dynamic Systems and Applications, 1992, 6(1) : 271~282
  • 5[5]Wong P J Y and Agarwal R P. On the existence of solutions of singular boundary value problemsfor higher order difference equations[J]. Nonlinear Analysis, 1997, 28(2):277~287
  • 6[6]Agarwal R P and D O'R egan. A coup1ed system of boundary value problems[J]. Applicable Analysis, 1998, 69(3~4):381~385
  • 7[7]Regan D O. Existence theory for nonlinear ordinary differential equations[M]. Kluwer Academic Publiahers, Dordrecht,1997.1~18
  • 8[8]Granas A, Guenther R B and Lee J W. Some gcneral existence prindples in ~e Caratheodory theory of nonlinear systems
  • 9[9]. Jour Math Pures Appl, 1991, 70:153~196

同被引文献12

  • 1郭莹莹,余向阳.光学Bloch方程的数值解法[J].中山大学学报(自然科学版),2005,44(5):108-110. 被引量:12
  • 2田瑞,李明,滑斌.有限差分法求解方同轴线的特性[J].甘肃科学学报,2007,19(1):111-113. 被引量:5
  • 3ZHANG Y N,JIANG D C,WANG J.A recurrent neuralnetwork for solving sylvester equation with time-varyingcoefficients[J].IEEE Transactions on Neural Networks,2002,13(5):1053-1063.
  • 4ZHANG Y N,GE S S.Design and analysis of a generalrecurrent neural network model for time-varying matrix in-version[J].IEEE Transactions on Neural Networks,2005,16(6):1477-1490.
  • 5ZHANG Y N,CHEN K.Comparison on Zhang neuralnetwork and gradient neural network for time-varying line-ar matrix equation AXB=C Solving[C] ∥Proceedingsof International Conference on Industrial TechnologyChengdu,China,2008.
  • 6MA W M,ZHANG Y N,WANG J.MATLAB simulinkmodeling and simulation of Zhang neural networks for on-line Time-varying Sylvester Equation Solving[C] ∥Pro-ceedings of International Joint Conference on Neural Net-works.Hong Kong,China,2008:286-290.
  • 7LI J P.General explicit difference formulas for numericaldifferentiation[J].Journal of Computational and AppliedMathematics,2005,183:29-52.
  • 8KHAN I R,OHBA R,HOZUMI N.Mathematical proof ofclosed form expressions for finite difference approxima-tions based on taylor series[J].Journal of Computationaland Applied Mathematics,2003,150:303-309.
  • 9JOHN H M,KURTIS D F.数值方法(MATLAB版)[M].周璐,陈渝,钱方,等译.4版.北京:电子工业出版社,2009.
  • 10ZHANG Y N,MA W M,YI C F.The Link betweenNewton Iteration for Matrix Inversion and Zhang NeuralNetwork(ZNN)[C].Proceedings of IEEE Conferenceon Industrial Technology,2008:1-6.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部