摘要
设G是一简单无向图 ,C(G)表示G的无向关联矩阵 ,Q(G) =C(G)C(G) T,det(λI -Q(G) )称为图G的拟拉普拉斯特征多项式 .该文对图的拟拉普拉斯特征多项式的系数进行了研究 ,给出了图的拟拉普拉斯特征多项式系数的一些性质 ,得到了正则图的线图、细分图。
Let G be a simple undirected graph.C(G) denote the undirected incidence matrix of G,Q(G)= C(G)C(G) T ,characteristic polynomial of Q(G) be called the quasi_Laplacian characteristic polynomial.In this paper, the authors investigate the coefficients of the quasi_Laplacian characteristic polynomial and show some properties of the coefficients the quasi_Laplacian characteristic polynomial,find quasi_Laplacian characteristic polyomial of line graph and subdivision graph and total graph of regular graph.
出处
《曲阜师范大学学报(自然科学版)》
CAS
2001年第4期40-43,共4页
Journal of Qufu Normal University(Natural Science)
关键词
基本生成子图
k-约化生成子结构
线图
全图
拟拉普拉斯特征多项式
简单无向图
characteristic polynomial
essential spanning subgraph
k_reduced spanning substructure
line graph
subdivision graph
total graph