期刊文献+

具有多时滞二维Lotka-Volterra捕食系统的渐近性 被引量:3

Behavior for two-species Lotka-Volterra prey-preyor system with multi-delays
下载PDF
导出
摘要 研究了具有时滞的两种群Lotka_Volterra系统的持续生存与全局稳定性 .应用Liapunov泛函和特征根正负性得到该系统持续生存的充要条件是a + ∑ni=1αi <0 ,以及全局渐近稳定的充分条件为 ∑ni=1(α2i + β2i) <-a 。 The permanence and global stability of two_species Lotka_Volterra prey predator system with multi_delays is discussed. Using Liapunov function and the sign of characteristic roots, it is obtained that the condition of permanence a+∑ni=1α i<0 and the condition of stability ∑ni=1(α 2 i+β 2 i)<-a , and these results generalize the result of Yasuhisa Saito.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2001年第3期27-30,34,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 陕西省自然科学基金资助项目 (96SL0 3)
关键词 多时滞 Lotaka-Volterra 捕食系统 持续生存 全局稳定性 渐近性 LIAPUNOV泛函 multi_delays Lotka-Volterra prey_preyor system permanence global stability
  • 相关文献

参考文献2

  • 1Lu Z,Proc Amer Math Soc,1986年,96卷,75页
  • 2Kuang Y,Delay Differential Equations with Applications in Population Dynamics,1960年

同被引文献15

  • 1贺云,陈斯养.广义特征方程及正解的存在性[J].云南师范大学学报(自然科学版),2006,26(1):6-10. 被引量:2
  • 2张恭庆 林源渠.泛函分析讲义[M].北京:北京大学出版社,1987.226.
  • 3Grove,E. A,Gyori, Ladas. On the characteristic equations for equations with continous and piecewise constant arguments[J]. Radovi Matematicki, 1990a, 5:271-281.
  • 4Gopalsamy,K. Stability and oscillations in Delay differential equations of population dynamics[M]. Dordrecht:Kluwer Academic Publishers, 1992.
  • 5I. Gyori,G. Ladas. Oscillation theory of Delay differentisl equations with applications[M]. New York: Oxford University press, 1992.
  • 6Ladas G,Sficas Y G.Oscillations of Neutral Delay Differential Equations[J].Canad Math Bull,1986,29:438-445.
  • 7Grove E A,Kulenovic M R S,Ladas G.Sufficient Conditions for Oscillation and Non-Oscillation of Neutral Equations[J].Differential Equations,1987,68:373-382.
  • 8Grove E A,Gyori Ladas.On the Characteristic Equations for Equations with Continous and Piecewise Constant Arguments[J].Radovi Matematicki,1990,5:271-281.
  • 9Gopalsamy K.Stability and Oscillations in Delay Differential Equations of Population Dynamics[M].Dordrecht:Kluwer Academic Publishers,1992.
  • 10Gyori I,Ladas G.Oscillation Theory of Delay Differentisl Equations with Applications[M].New York:Oxford University Press,1992.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部