期刊文献+

基于神经网络的战场被动声/地震动目标识别方法 被引量:6

Passive Sensing with Acoustics/Seism on the Battlefield Using Artificial Neural Network
下载PDF
导出
摘要 目的在于研究人工神经网络在战场声 /地震动目标识别应用中的有效算法。通过建立战场目标声 /地震动特性探测与分析系统 ,在总结目标特性规律、分析传统 BP算法固有缺陷的基础上 ,采用改进的算法对分类器进行训练。典型战场目标信号样本检验表明 ,该方法具有良好的识别分类效果 ,利用基于神经网络的分类器来实现对战场声 /地震动目标的识别分类是可行的。 This paper is intended to explore the effectiveness of battlefield targets classification and identification according to the characteristics of acoustic and seismic signals using ANN (Artificial Neural Network). Acoustic/seismic test and analysis system for typical battlefield targets is developed and properties of targets are acquired. Aiming at solving the drawback of extremely slow convergence speed of normal BP algorithm, a reformed BP algorithm is adopted to train the classifier. It is demonstrated that the reformed BP algorithm has higher correct identification rates for acoustic and seismic signals of battlefield targets according to signal sample experiments of typical targets, and the ANN classifier is suitable for the classification of battlefield targets.
出处 《探测与控制学报》 CSCD 北大核心 2001年第3期25-27,共3页 Journal of Detection & Control
关键词 人工神经网络 声/地震动探测 BP算法 目标识别 战场侦察传感器系统 artificial neural network acoustic/seismic sensing back propagation algorithm
  • 相关文献

参考文献3

  • 1[1]谢毅.地面战场目标声/地震动探测与识别技术研究(博士后研究工作报告)[R].北京:北京理工大学,1997.
  • 2[2]Yoh-han. Adaptive pattern recognition and neural network [M]. Addison Wesley Publishing Company, Inc., 1989.
  • 3[6]陈季镐.统计模式识别[M].北京:北京邮电学院出版社,1989.

同被引文献28

  • 1Skow Ronski M D, Harris J G. Increased MFCC filter bandwidth for noise robust phoneme recognition[C]// IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002,: 801-804.
  • 2Xiaojun Ji, Ting Li. Feature vector of AR model parameters and recognition effect analysis.3rd International Symposium on Test and Measurement, Xi'an, China, 1999: 333-336
  • 3Chapa, Joseph O R, Raghuveer M. Algorithms for designing wavelets to match a specified signal. IEEE Trans. on Signal Processing, 2000, 48:3395-3406
  • 4管淑伟.快速目标识别系统的软硬件技术研究:[硕士学位论文].南京:南京理工大学,2000
  • 5Leung H, Yifeng Li. Improved multiple target tracking using dempster-shafter identification. SPIE, 1997,3068:218-227
  • 6Hongyan Sun, Shiyi Mao. Multisensor data fusion for target identification. Chinese Journal of Electronics, 1995, 4(3): 78-84
  • 7Zhang Y. Distributed sequential nearest neighbor multitarget tracking algorithm. IEEE Pro-Radar, Sonar Naving, 1996, 143(4): 255-260
  • 8Rajagopal R. Adaptive bearing estimation and tracking of multiple targets in a realistic passive sonar scenario. SPIE, 1997, 3086: 139-150
  • 9鲁强 骆清铭 曾绍群.虚拟现实在声引信设计中的应用[J].探测与控制学报,2000,22(1):31-34.
  • 10王伟策.引爆控制技术[M].南京:解放军理工大学工程兵工程学院,1998..

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部