期刊文献+

视密度加权的时平均统一二阶矩两相湍流模型 被引量:1

A MASS-WEIGHED MERAGED SECOND-ORDER MOMENT TWO-PHASE TURBULENCE MODEL
下载PDF
导出
摘要 在气粒两相湍流的双流体模型中,颗粒相的视(表观)密度是有脉动的,在时平均的统一 工阶矩(USM)模型中出现了和颗粒数密度或视密度脉动有关的项和方程;使模型方程比较复 杂.实际上,用LDV或PDPA测量的流体(用小颗粒代表)和颗粒速度都是颗粒数加权平均 的结果.因此,在视密度加权平均基础上推导两相湍流模型更为合理.通过推导和封闭了视密 度加权平均的统一二阶矩模型(MUSM)方程组,改进了两相速度脉动关联的封闭,并引入了 颗粒遇到的气体脉动速度及其输运方程.MUSM模型可以减少所用方程数,节省计算量.视 密度加权平均的统一二阶矩两相湍流模型是一种对原有时间平均的统一二阶矩模型的改进和 发展. There is particle apparent density or number density fluctuation in turbulent gas- particle flows. Hence, the time-averaged unified second-order moment (USM) two-phase turbulence model must include the terms and equations related to number density fluctuation, which makes the model more complex. Actually, the gas (tracked by small particles) and particle velocities measured by LDV or PDPA are the number-averaged ones. So, it is more reasonable to use mass-weighed averaging instead of time averaging. Furthermore, the mass-weighed averaging can reduce the number of equations, thus reduce the computation storage and time. In this paper, a mass-weighed averaged second-order moment (MUSM) two-phase turbulence model is derived and closed. This model includes an equation of gas fluctuation velocity seen by particles. Therefore, the MUSM model can be considered as the improvement and development of the original time-averaged USM model.
出处 《力学学报》 EI CSCD 北大核心 2001年第5期679-684,共6页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家重点基础研究专项经费(G1999022207) 国家自然科学基金(50006003)资助项目
关键词 视密度加权平均 湍流两相流 二阶矩模型 mass-weighed averaging, turbulent gas-particle flows, second-order moment model
  • 相关文献

参考文献6

二级参考文献8

共引文献4

同被引文献23

  • 1顾正萌,郭烈锦.沙粒跃移运动的动理学模拟[J].工程热物理学报,2004,25(S1):79-82. 被引量:5
  • 2曹玉春,李晓东,严建华,池涌,岑可法.管式布风流化床密相区气固流动特性数值模拟[J].浙江大学学报(工学版),2005,39(6):795-800. 被引量:5
  • 3Wang W, Li JH. Simulation of gas-solid two-phase flow by a multi-scale CFD approach-Extension of the EMMS model to the sub-grid level. Chemical Engineering Science, 2007, 62:208-231.
  • 4Gidaspow D, Lu HL. Equation of state and radial distribution function of FCC particles in a riser. Journal of AIChE, 1998, 44:279-293.
  • 5Cody GD, Johri J, Goldfarb D. Dependence of particle fluctuation velocity on gas flow, and particle diameter in gas fluidized beds for monodispersed spheres in the Geldart B and A fluidization regimes. Powder Technology, 2008, 182: 146-170.
  • 6Jung J, Gidaspow D, Gamwo IK. Measurement of two kinds of granular temperatures, stresses, and dispersion in bubbling beds. Industrial and Engineering Chemistry Research, 2005, 44:1329-1341.
  • 7Holland D J, Muller CR, Dennis JS, et al. Spatially resolved measurement of anisotropic granular temperature in gas-fluidized beds. Powder Technology, 2008, 182:171-181.
  • 8Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description. Boston: Academic Press, 1994. 239-296.
  • 9Chapman S, Cowling TG. The Mathematical Theory of Non-uniform Gases. Cambridge: Cambridge University Press, 1970.
  • 10Grad H. On the kinetic theory of rarefied gases. Communications on Pure and Applied Mathematics, 1949, 2:331-407.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部