期刊文献+

方板弹性突跳的数值模拟──第一部分:理论和计算方案 被引量:3

NUMERICAL SIMULATION OF SNAP-THROUGH OF SQUARE PLATE──PartⅠ:Theory and Numerical Methods
下载PDF
导出
摘要 在非线性有限元通用程序中,对叉型分岔问题,本文提出一个搜索分枝方向的方法,该方法不需计算切线刚度矩阵的导数,就能确定所有分枝方向。根据Lagrange-Dirichlet定理判别各平衡状态的稳定性。对四边夹支边界条件下、受面内压力作用的方板在后屈曲过程中的力学行为进行了大范围数值追踪,对各种平衡状态的稳定性进行了判别,其中稳定的平衡解可以模拟方板弹性突跳的整个过程,包括加载过程中的弹性突跳和卸载过程中的弹性突跳。计算结果和前人的实验结果进行了比较。本文第一部分讨论计算方法,给出计算方案;第二部分为方板在后屈曲过程中弹性突跳的计算结果。 To search direction of each solution branch at pitch-fork bifurcation point, a numerical method is proposed. Because this method does not require information of derivatives of tangential stiffness matrix, it is suitable for general nonlinear finite element program. Stability of equilibrium corresponding to each solution curve is judged by Lagrange-Dirichlet theorem. The solution path in post-buckling of a square plate is traced globally and equilibrium stability of the plate was judged. The stable equilibrium can simulate the whole process of snap-through of square plate during loading and unloading. The result agrees with available experimental data. Numerical methods and algorithm are proposed and numerical results of snap-through of square plate are compared with experimental data.
出处 《工程力学》 EI CSCD 北大核心 2001年第5期18-28,共11页 Engineering Mechanics
基金 国家自然科学基金资助项目(19990510 19872001) 北方交通大学论文基金资助(PD-072)
关键词 非线性 分岔 稳定性 弹性突跳 Bifurcation (mathematics) Computer simulation Finite element method Lagrange multipliers Nonlinear programming Stability
  • 相关文献

参考文献2

二级参考文献4

共引文献15

同被引文献23

  • 1王小兵,陈建军,高伟,杜雷,马芳.智能板结构动力有限元模型的建立及仿真[J].电子机械工程,2004,20(4):61-64. 被引量:4
  • 2吴柏生,胡守信.弹性基础上方形板的二次分叉[J].吉林大学自然科学学报,1993(4):33-41. 被引量:1
  • 3张亚飞.基于参数化宏模型的微陀螺系统级仿真及验证[J].先进技术研究通报,2009,3(10):33.
  • 4Kazanc Z, Mecitoglu Z. Nonlinear Dynamic Behavior oI Simply Supported Laminated Composite Plates Sub- jected to Blast Load[J]. Journal of Sound and Vibra- tion, 2008, 19(3) :883-897.
  • 5Ding Haojiang, Chen Buo, Liang Jian. General solu-tions for coupled equations for piezoelectric media[J]. International Journal of Solids Structures, 1996, 33 (16) :2283-2298.
  • 6Ding Haojiang, Wang Guoqing, Chen Weiqiu. A Bounda- ry Integral Formulation and 2D Fundamental Solution for Piezoelectric Media[J]. Computer Methods in Applied Me- chanics and Egineering , 1998,158 (1/2):65-80.
  • 7Yang Yao-Joe, Gretillat Marc-Alexis, Senturia S D. Effect of Air Damping on the Dynamics of ikbrruniform Defonm- fions of Microstructures[C] //1997 ].nterrmtiorml Confer- ence on Solid State Sensors and Actuators, Chicago, USA, June 16-19, 1997:1093-1096.
  • 8Han S M, Benaroya H, Wei T. Dynamics of Trans- versely Vibrating Beams Using Four Engineering The- ories[J]. Journal of Sound and Vibration, 1999, 225 (5) .835-988.
  • 9Ding Haojiang,Chen Buo,Liang Jian. General solutions for coupled equations for piezoelectric media[J].International Journal of Solids and Structures,1996,(16):2283-2298.
  • 10Divg Haojiang,Wang Guoqing,Chen Weiqitt. A Boundary Integral Formulation and 2D Fundarmntal Solution for Piezoelectric Media[J].Computer Methods in Applied Mechanics and Engineering,1998,(1/2):65-80.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部