摘要
本文利用临界点理论,研究一类非线性退缩椭圆型方程Dirichlet问题多解性。在嵌入非紧的条件下,证明泛函在给定集上满足(PS)条件。
Let Ω be a bounded domain with smooth boundary Ω and let Lu≡
where
and
Consider the following Dirichlet problem:
where λ≥0, p = q0-1,q0=2n/(n-2+n/s), s >n/2. We obtain the following
result:
Theorem 1. Suppose that f(x,t) satisfies conditions (f1)-(f4). Then there exists a sequence of numbers {μk}
μ1>μ2>…>μk>μk+1>…>0,
such that for every λ∈[μk, μk-1] there are at least k distinct pairs of solutions of Dirichlet problem (P).
出处
《杭州大学学报(自然科学版)》
CSCD
1989年第1期12-20,共9页
Journal of Hangzhou University Natural Science Edition
关键词
椭圆型方程
DIRICHLET
多重解
degenerate elliptic equation
critical point
(PS) condition, embedding map