摘要
该文从结构和算法上研究了Max-Min模糊神经网络(MMNN),找出了其固有的局限性,相应提出了一系列的改进措施形成改进MMNN算法。为了更好地提高网络的性能,同时考虑到优化算法的收敛速度,本文提出了基于模拟退火遗传算法的网络参数优化方法,通过计算机仿真,证明了该方法是可行的。最后,运用它作为分类器对实际的船舶辐射噪声进行了分类实验,与BP等算法进行了比较,显示出其独特的优越性。
In this paper, the structure and algorithm of Max-Min fuzzy neural network (MMNN) are studied in detail. In order to get rid of some intrinsic localization of the method and boost up the capability of the MMNN, a series of steps are presented and the improved project (IMMNN) is gained. With a view to making the capability even much better and compressing the time of the convergence, the op-IMMNN is put forward in which the parameters of IMMNN are optimized by genetic algorithm combined with simulated annealing. In the simulation, the result of op-IMMNN is superior over the conventional MMNN's. Finally, a satisfactory result is also obtained when op-IMMNN is regarded as a classifier to distinguish the types of the ships according to their actual radiated noise. Comparing with the neural network based on the back propagation algorithm, the advantages of the op-IMMNN are fully put up.
出处
《电子与信息学报》
EI
CSCD
北大核心
2001年第10期975-983,共9页
Journal of Electronics & Information Technology
关键词
模糊隶属度函数
神经网络
模拟退火算法
遗传算法
模糊分类器
Fuzzy membership function, Neural network, Simulated annealing algorithm, Genetic algorithm, Classifier