期刊文献+

Poisson groupoid的余迷向双截面

Coisotropic Bisection of Poisson Groupoids
下载PDF
导出
摘要 Poisson groupoid是Weinstein在研究PoissonLie群和辛groupoid时提出的一个新概念 .本文对Poisson groupoid中较重要的余迷向双截面做了一定的讨论 。 The notion of Poisson groupoids was introduced by Weinstein when he realized many similarities in Poisson group theory and the theory of symplectic groupoids.In this article,the author studies the important conception of Poisson groupoids\|coisotropic bisection,and proves some useful results.
作者 袁霓
出处 《首都师范大学学报(自然科学版)》 2001年第3期8-12,共5页 Journal of Capital Normal University:Natural Science Edition
关键词 Poissongroupoid 余迷向双截面 PoissonLie群 辛groupoid 辛几何 辛流形 Poisson groupoid, coisotropic bisection
  • 相关文献

参考文献12

  • 1Drinfel' d V G. Hamiltonianstructures on Lie groups, Lie groups, Lie bialgebras and the geometric meaning of theclassical Yang-Baxter equations. Soviet Mathe. Dokl, 1983,27(1):68~71
  • 2Drinfel' d V G. Quantum groups. Proc ICM Berkeley, 1(1986), 789-820
  • 3Vaisman I. Lectures on the Geometry of Poisson Manifolds.
  • 4Mikami K, Weinstein A. Moments and Reduction for Symplectic Groupoids. Publ. RMIS,Kyoto Univ. 1988, 24,121~140
  • 5Mackensize K C H, Xu P. Lie bialgebroids and Poisson groupoids. Duke Math J.1994,73(2):415~452
  • 6La J H, Weinstein A. Poisson Lie groups, dressing transformations. and Bruhatdecompositions. J Diff Geom, 1990,31:501~526
  • 7Karasev M V. Quantization of nonlinear Lie-Poisson brackets in quasi-classicalapproximation. Preprint Institute for Theoretical Physics, Kiev, 1985
  • 8Semenov-Tian-shansky M A. Dressing transformation and Poisson Lie group actions.Publ. RIMS, Kyoto University,1985,21: 1237~1260
  • 9Weinstein A.the local structure of Poisson manffolds. J,Diff. Geom,18,1983,18:523~557
  • 10Weinstein A. Lagrangian mechanics and groupoids. Department of MathematicsUniversity of California Berkeley,1992

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部