期刊文献+

二阶非线性变时滞差分方程解的渐近性质

Asymptotic Behavior of Solutions for the Second order Nonlinear Difference Equations with Variable Delay Argument
下载PDF
导出
摘要 本文研究了一类二阶非线性变滞量差分方程解的渐近性 ,给出了该类方程所有非振动解当 n→ The asymptotic behavior of solution for a class of the second order nonlinear difference equations with variable delay argument is studied.We obtain some sufficient conditions under which the nonoscillatory solution of the equation tends to ∞ or zero as n →+∞.
机构地区 济南大学数学系
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2001年第4期434-436,共3页 Journal of East China University of Science and Technology
关键词 非线性时滞差分方程 渐近性 最终正解 非振动解 离散系统 振动性 nonlinear delay difference equation asymptotic behavior eventually positive solution
  • 相关文献

参考文献3

二级参考文献13

  • 1Ding Tongren,Sci Sin A,1981年,24卷,8期,939页
  • 2Chen Boshan,数学学报,1990年,33卷,3期,353页
  • 3Chen Boshan,Chin Sci Bull,1988年,33卷,6期,413页
  • 4L. H. Erhe and B.G.Zhang, Oscillation of discrete analogues of delay equations,Diff. Integral Equations, 2(1989),300-309.
  • 5D. A.Georgiou, E.A.Grove and G.Ladas, Oscillation of neutral difference equations with variable coefficients, Lecture Notes in Pure Appl. Math. 127,Dekker, New York,1991.
  • 6I.Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Oxford Univ. Press, 1991.
  • 7G.Ladas, Recent developments in the oscillations of delay difference equations in "Differential Equations: Stability and Control",Dekker, New York, 1990.
  • 8G.Ladas, Explicit conditions for the oscillation of difference equations, J. Math. Anal Appl.153(1990),276-287.
  • 9V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Mathods and Applications, Acad. Press, New York, 1988.
  • 10B. S. Lalli, B. G, Zhang and Z. Li, On the oscillation of solutions and existence of positive solutions of neutral difference equations. J. Math. Anal Appl.158(1991),213--233.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部