摘要
本文给出了空间形式F^(3+p)(c)(P>1)中具有平行平均曲率向量场的三维紧致子流形M^3是全脐点的Ricci曲率的Pinching条件。
Let F3 +p(c) be a 3+p-dimensional space form with constant sectional curvature C, and let M3 be a 3-dimensional submanifold with parallel mean curvature vector.
In this paper, we obtain the following :
Theorem 1. Let M3 be a 3-dimensional submanifold in F3+p(c)(c≥0, P>1) with parallel mean curvature vector ξ. If the Ricci curvature of M3
is not less than 5/4-(c+ ||ξ||2), then M3 must be totally umbilical.
Theorem 2. Let M3 be a 3-dimensional submanifold in F3+p(c)(p>1)
with parallel mean curvature vector ξ. If the sectional curvature of M3 is positive and the Ricci curvature of M3 is not less then k(c+||ξ||2) with k =
min then M3 is totally umbilical.
出处
《杭州大学学报(自然科学版)》
CSCD
1989年第4期383-391,共9页
Journal of Hangzhou University Natural Science Edition
关键词
黎曼流形
紧致子流形
RICCI曲率
parallel mean curvature vector
compact submanifold
Ricci curvature