期刊文献+

对称单面鳍线的人工神经网络模型

Artificial Neural Network Models for Symmetrical Unilateral Fin-Lines
下载PDF
导出
摘要 采用知识人工神经网络模型拟对称平面鳍线,通过利用先验知识减小输入映射关系的复杂度,建立了知识人工神经网络模型,减少了训练样本的数量。同时保留了全波时域有限差分法的准确性,而且具有快速简便的优点。 In this paper, a knowledge-based artificial neural network is used to model the symmetrical unilateral fin-lines. Utilizing prior knowledge for reducing complexity of input-output relationships that the Artificial Neural Network (ANN) must learn, it allows an accurate ANN model to be developed with less training data which is very advantageous when training data is expensive/time Consuming to obtain, such as with EM simulation. The neural network is electromagnetically developed with a set of training data that are produced by the finite elemont method (FDTD). which is robust both from the angle of time of computation and accuracy.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2001年第5期454-457,共4页 Journal of University of Electronic Science and Technology of China
基金 信息产业部预研基金资助项目
关键词 人工神经网络模型 鳍线 传输线 artificial neural network knowledge based fin lines millimeter wave
  • 相关文献

参考文献5

二级参考文献10

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部