期刊文献+

关于椭圆曲线密码的实现 被引量:10

Some Problems in an Implementation of Elliptic Curve Cryptosystem
原文传递
导出
摘要 从实现的角度,讨论了椭圆曲线密码实现中的一些问题,涉及有限域的选择,高斯正规基,曲线的选择,点乘的计算方法,签名方案等实际问题。 In this paper,we discuss some problems in the implementations of the elliptic curve cryptosystems, such as how to select a secure elliptic curve, how to select a suitable finite field which the elliptic curve is defined over, the computing methods of point multiplication and the way choosing a signature scheme.
出处 《通信技术》 2001年第6期1-3,共3页 Communications Technology
基金 国家自然科学基金资助项目(69773015 69873043)
关键词 椭圆曲线 数字签名 密码 elliptic curve, digital signature, finite field
  • 相关文献

参考文献4

  • 1Johson D, Menezes A. The Elliptic Curve Digital Signature Algorithm (ECDSA). Technical Report CORR 99 - 31, Canada Dept. Of C&O, University of Waterloo, 1999.
  • 2Menezes A, Oorachot P C V, Vanstone S. Handbook of Applied Cryp - tography, CRC Press, 1996:425 -460.
  • 3Blake I, Sereussi G, Smart N. Elliptice Curves in Cryptography. London: Cambridge Univ. Press, 1999.
  • 4杨君辉,戴宗铎,杨栋毅,刘宏伟.一种椭圆曲线签名方案与基于身份的签名协议[J].软件学报,2000,11(10):1303-1306. 被引量:52

二级参考文献2

  • 11,Johson D, Menezes A. The elliptic curve digital signature algorithm. Technical Report, CORR 99-31, Canada: Department of Combinatorics and Optimizat ion, University of Waterloo, 1999
  • 22,Menezes A, Van Oorschot P C, Vanstone S. Handbook of Applied Cryptography. Ne w York: CRC Press, 1996. 425~460

共引文献51

同被引文献45

  • 1王延斌,叶兵,孙东昱.基于改进Montgomery模乘算法的智能卡协处理器设计[J].微电子学与计算机,2004,21(12):104-106. 被引量:2
  • 2邱晓华,沈连丰,宋铁成,叶芝慧,张毅.一种扩展部分BCH码纠错能力的方法[J].东南大学学报(自然科学版),2005,35(3):328-332. 被引量:4
  • 3M A Hasan,M Z Wang,V K Bhargava. A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields[J].IEEE Trans on Computers, 1993 ;42( 11 ): 1278~1280
  • 41EEE P1363.Standard for Public_Key Cryptography:Working Draft [EB/OL].http://www.secg.org/, 1998-08
  • 5R C Mullin. A characterization of the extremal distributions of optimal normal bases[C].In :Proc of Marshall Hall Memorial Conference,Burlington, Vermont, 1990
  • 6R C Mullin,I M Onyszchuk,S A Vanstone et al. Optimal normal bases in GF(pn)[J].Discrete Appl Math, 1988/89;22:149~161
  • 7OKAMOTO E. Cryptesystems based on Polynomials over Finite Fields[C]. India:Prec the Information Theory Workshop 2002.
  • 8LIDL R, NIEDERREITER H. Introduction to Finite Fields andTheir Plicatious[M]. Cambridge: Cambridge University Press, 1994.
  • 9KITSOS P, THEODORIDIS G, KOUFOPAVLOU. An eficientreconfigurable multier architecture for GF(2) [J]. Microelectronics J, 2003, 34(10) : 975-980.
  • 10WU H. Bit-parallel Finite Field Multiplier and Squarerusing Polynomial Basis[J]. IEEE Trans Computers, 2002, 51(07): 750-758.

引证文献10

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部