摘要
证明了二维乘积码与其分量码的网格图复杂度之间的一般关系 ,并分析了二维乘积码的网格图的设计 .由此可利用许多短码的网格图复杂度来给出长码网格图复杂度的较好的上界 。
The general relationship in trellis complexity between two dimensional product codes and its component codes is proved and the trellis design of product codes is analyzed. Thus, the trellis complexity of many long codes can be upper bounded by using the trellis complexity of some short codes. Moreover, we can obtain the suboptimal upper bound of trellis complexitites of product codes without finding their direct sum structure.
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2001年第5期685-688,共4页
Journal of Xidian University
基金
国家自然科学基金资助项目 ( 6 9972 0 35 )
关键词
二维乘积码
网格图
笛卡尔乘积
网格图复杂度
软判决译码
two dimensional product codes
trellis Cartesian product
trellis complexity
soft decision decoding