期刊文献+

块竞赛矩阵的谱半径(英文)

On the Spectral Radius of Multipartite Tournament Matrices
下载PDF
导出
摘要 若 T=Tn1,n2 ,… nk是 k一块竟赛矩阵 ,则其谱半径ρ(T)的上界为p(T)≤ k- 12 k Σi<jninj,其中等号当且仅当 T为任意正则 k-均块 ,3≤ k,或者正则双块时成立 .本文已包含 [7,8]中的有关结果 . Let T=T n 1,n 2,...n k be a k-partite tournament matrix. Then the spectral radius ρ(T) of T has the following upper bound:p(T)≤k-12k Σ i<j n in j , where the equality holds iff T is either regular k-equipartite, 3≤k, or regular bipartite.\;Some related results presented in are included.
出处 《新疆大学学报(理工版)》 2001年第4期432-435,共4页
基金 NSFC
关键词 竞赛矩阵 谱半径 邻接矩阵 tournament matrix spectral radius adjacency matrix
  • 相关文献

参考文献9

  • 1[1]Cvetkovic D M, Doob M, Sachs H. Spectra of Graphs[M]. New York: Academic Press. 1980.
  • 2[2]Cvetkovic D M,Doob M. Gutrnan I, Torgasev A. Recent results in the theory of graph spectra[J].Ann Discrete Math, 1988, 36.
  • 3[3]Cvetkovic D M, Rowlinson P. The largest eigenvalue of a graph[J]. Linear and Multilinear Algebra,1990,28(3):33.
  • 4[4]Hong Y. A Bound on the spectra radius of graphs[J]. Linear Algebra Appl,1988,108: 135-140.
  • 5[5]Brigham R C, Dutton R D. Bounds on the graph spectra[J]. J Combin Theory Ser B, 1984,37: 228-234.
  • 6[6]Brualdi R A, Hoffman A J. On the spectral radius of (0,1) matrix[J]. Linear Algebra Appl, 1985,65:133-146.
  • 7[7]Stanley R P. A bound on the spectral radius of graphs with e edges[J]. Linear Algebra Appl, 1987,87:267-269.
  • 8[8]Powers D L. Bounds on graph eigenvaluse[J]. Linear Algebra Appl,1989,117: 65-74.
  • 9[9]Hong Y. Bounds of eigenvaluse of graphs[J]. Discrete Math,1993,123: 65-74.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部