期刊文献+

正规带的张量积与极小正规带同余

Tensor Product of Normal Bands and Minimum Normal Band Congruence
下载PDF
导出
摘要 证明在半群范畴中,两个半群的张量积的极大正规带同态象恰好是这两个半群极大正规带同态象在正规带范畴中的张量积。 This paper proves that maxima1 normal band homomorphism image of tensor products oftwo semigroups exactly is the tensor product of maximal normal band homomorphism image of the twosemigroups in normal band category.
作者 姜学波 李斌
出处 《聊城师院学报(自然科学版)》 2001年第3期17-19,共3页 Journal of Liaocheng Teachers University(Natural Science Edition)
关键词 张量积 正规带 双同态 范畴 函子 半群 tensor product, normal band, b-homomorphism,category,functor
  • 相关文献

参考文献9

  • 1[1]P.A. Grillet. The Tensor Product of Sem group[J]. Trans. Amer. Math. Soc. ,1969(138) :267~280.
  • 2[2]T.J. Head. Homomorphism of Commutative Sem groups as Temsor Maps[J]. J. Nat. Sci. Math. ,1967(7) :161~165.
  • 3[3]R. Fulp. Tensor and Torsion Products of Sem groups[J]. Pacific J. Math. ,1970(32) :685~696.
  • 4[4]T.E. Delaney. The Tensor Product of a Group with a Sem group[J]. J. Nat. Sci. Math. ,196(7) :155 ~159.
  • 5[5]T.E. Delaney. The Tensor Product of Sem;lattices[J]. Psortugaliae Math. 1972(31) :193~202.
  • 6[6]P.A. Grillet. The Tensor Product of Commutative Semigroups[J]. Trans. Amer. Math. Soc. , 1969(138) :281~293.
  • 7[7]N. Kimura. Tensor Product of Sem;lattices[J]. Notices of Amer. Math Soc. ,1970(17):554.
  • 8仇永平.GV——逆半群的结构[J].山东师范大学学报(自然科学版),2001,16(2):125-128. 被引量:2
  • 9[9]J.M. Howie. Fundamentals of Semigroup Theory[M]. Oxford:Oxford University Press, 1995.1~70.

二级参考文献3

  • 1Howie J M. Fundamentals of Semigroup Theory[M]. Oxford :Oxford University Press, 1995.1~30
  • 2Bogdanovic S.Senigroups with a System of Suhsemigroups [M].Novi Sad:Novi Sad University Press,1985.1~60
  • 3Petrich M. Lectures in Semigroups [M].London:John Wiley and Sons, 1977.30~71

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部