正规带的张量积与极小正规带同余
Tensor Product of Normal Bands and Minimum Normal Band Congruence
摘要
证明在半群范畴中,两个半群的张量积的极大正规带同态象恰好是这两个半群极大正规带同态象在正规带范畴中的张量积。
This paper proves that maxima1 normal band homomorphism image of tensor products oftwo semigroups exactly is the tensor product of maximal normal band homomorphism image of the twosemigroups in normal band category.
出处
《聊城师院学报(自然科学版)》
2001年第3期17-19,共3页
Journal of Liaocheng Teachers University(Natural Science Edition)
关键词
张量积
正规带
双同态
范畴
函子
半群
tensor product, normal band, b-homomorphism,category,functor
参考文献9
-
1[1]P.A. Grillet. The Tensor Product of Sem group[J]. Trans. Amer. Math. Soc. ,1969(138) :267~280.
-
2[2]T.J. Head. Homomorphism of Commutative Sem groups as Temsor Maps[J]. J. Nat. Sci. Math. ,1967(7) :161~165.
-
3[3]R. Fulp. Tensor and Torsion Products of Sem groups[J]. Pacific J. Math. ,1970(32) :685~696.
-
4[4]T.E. Delaney. The Tensor Product of a Group with a Sem group[J]. J. Nat. Sci. Math. ,196(7) :155 ~159.
-
5[5]T.E. Delaney. The Tensor Product of Sem;lattices[J]. Psortugaliae Math. 1972(31) :193~202.
-
6[6]P.A. Grillet. The Tensor Product of Commutative Semigroups[J]. Trans. Amer. Math. Soc. , 1969(138) :281~293.
-
7[7]N. Kimura. Tensor Product of Sem;lattices[J]. Notices of Amer. Math Soc. ,1970(17):554.
-
8仇永平.GV——逆半群的结构[J].山东师范大学学报(自然科学版),2001,16(2):125-128. 被引量:2
-
9[9]J.M. Howie. Fundamentals of Semigroup Theory[M]. Oxford:Oxford University Press, 1995.1~70.
二级参考文献3
-
1Howie J M. Fundamentals of Semigroup Theory[M]. Oxford :Oxford University Press, 1995.1~30
-
2Bogdanovic S.Senigroups with a System of Suhsemigroups [M].Novi Sad:Novi Sad University Press,1985.1~60
-
3Petrich M. Lectures in Semigroups [M].London:John Wiley and Sons, 1977.30~71
-
1朱玉山.一元泛代数的双同余、双同态与双同构[J].中国计量学院学报,2005,16(2):156-158. 被引量:1
-
2朱玉山.双同态与 -盈满子集(英文)[J].中国计量学院学报,1999,10(2):21-24. 被引量:1
-
3李师正.关于自由交换半群的张量积[J].泰山学院学报,1999,24(3):1-3.
-
4马传贵,张春元.关于剩余类环Z_n和Galois环GR(p^e,n)上的理想双同态门限体制[J].高校应用数学学报(A辑),1998,13(2):217-222.
-
5仇永平.正规带的张量积[J].山东师范大学学报(自然科学版),2000,15(4):380-382.
-
6梁少辉,韩胜伟.双Quantales模中的张量积[J].计算机工程与应用,2012,48(9):30-32.