摘要
设(S,+,e)为一可交换半群,有单位元e.称函数ρ:s→[-1,1]为有界半特征,若ρ(e)=1且ρ(s+t)=ρ(s)ρ(t),s,t∈S.设H为一些有界半特征所成的集合,M(H)为H上的全体有限Radon测度,则有下面的同胚定理是到RS的某个子集的同胚映射.应用同胚定理,给出了局部紧空问上的随机测度的相应的经典命题的较简单新证明,且无需第二可数性条件.
Let(S, +,e) be acommutative semigroup with neutral element e . A bounded semicharacter is afunc-tion ρ:S→[-1,1]suchthat ρ(e)=1and ρ(s+t)=ρ(s)ρ(t),s,t∈S.Let H be a set of some bounded semicharacters, M( H) be the set of all finite Radon measures on H. Then holds the homeomorphism theo-rem: The mapping μ→Lμ:= Hρ(s)μ(dρ),s∈S is a homeomorphism fromM(H) to a subset of RS. Using this theorem, a new and simpler proof is given for the corresponding canonical propositions of the random measure on a locally compact space, without the second countability condition.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2001年第5期9-11,15,共4页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
广东省自然科学基金资助项目(980287)