期刊文献+

张量空间中锥的可分解性

The Decomposable Projective Cone in Tensor Vector Space
下载PDF
导出
摘要 在文献 [1 ]的基础上研究张量空间中锥的性质 ,得到了张量空间中射影锥的极端向量的表示形式 .给出了张量空间中射影锥可分解的充分必要条件 ,并由此可得出有限维实空间中真正锥可分解的已有结论 . We studied the properties of the projective cone in tensor vector space defined by Barker. We obtained the expressions for the projective cone and the extreme vectors in the projective cone. We gave the sufficient and necessary condition of decomposable for the projective cone.
作者 牛少彰
出处 《工科数学》 2001年第5期27-30,共4页 Journal of Mathematics For Technology
关键词 张量空间 真正锥 可分解性 射影锥 闭凸锥 tensor product projective cone decomposable
  • 相关文献

参考文献6

  • 1牛少彰.张量空间中的真正锥[J].工科数学,2000,16(1):45-47. 被引量:2
  • 2Loewy R, Schneider H. Indecomposable Cones[J]. Linear Algebra and Its Application, 1975, 11:235-245.
  • 3Barker G P, Loewy R. The Structure of Cones of Matrices[J]. Linear Algebra and Its Application, 1975, 12:87-94.
  • 4Barker G P. Monotone Norms and Tensor Products[J]. Linear and Multilinear Algebra, 1976, 4:191-199.
  • 5Tam B S. Some Results of Polyhedral Cones and Simplicial Cones[J]. Linear and Multilinear Algebra, 1977, 4:281-284.
  • 6Mcmullen P, Shephard G C. Convex Polytops and the Upper Bound Conjecture[M]. Cambridge University Press London, 1971.

二级参考文献3

  • 1Barker G P. Monotone norms and tensor products[J]. Linear and Muttillnear Algebra, 1976,4:191-199.
  • 2Tam B S. Some results of potyhedral cones and simplicial eones[J]. Linear and Muttitinear Algebra, 1977.4:281-284.
  • 3Mcmullen P. and Shephard G C. Convex Polytops and the Upper Bound conjecture[M]. Cambridge University Press, London, 1971.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部