期刊文献+

随机介质中扩散过程的尺度跃迁 被引量:1

Scaling-up of DiffusionProcess in a Random Medium
原文传递
导出
摘要 本文考虑随机多孔介质中的示踪粒子的随机移动过程和相应的尺度跃迁问题 .假设当时间和空间进行适当的尺度跃迁时 ,其粒子的移运过程弱收敛于是 d-维中心布朗运动 ,具有协方差 D.随机介质对示踪粒子的作用可表示为小的扰动力 ,扰动过程收敛于具有相同协方差阵的布郎运动 ,但具有一个形如 M.a的附加漂移 .对于扰动的粒子的稀薄过程 ,我们证明了试验粒子的流度和协方差通过 Einstein公式相关联 .证明 Einstein公式所用的方法就是计算轨迹空间上的测度的 Radon-Nikodym导数 (Girsanov公式 ) .研究单个粒子在具有时间独立的随机非均匀性质的格上运动和在速度满足 Langevin方程的随机势场中的运动 ,关于尺度跃迁过程得到了一些特征性质和扩散矩阵和漂移之间的关系 . Consider the stochastic displacement process of a tagged partical X(t) in random porous medium and scaling-up problem. Assume that this displacement process converges weakly to d-dimensional centered Brownnian motion with covariance D, when space and time are appropriately sacled. The influence of random medium can be cast into a small pertubation force, the pertubed process converges to Brownian motion having the same covariance D and an additional drift of the from M.a. We show that the mobility of test particle and covariance are related to each other by the Einstein formula. The method used to verlfy Einstain formula is the calculus of Radon-Nikodym derivatives of measures in the space of trajectories (Cirsanov′s formula). We study the motion of a single particle on a lattice with time independent random inhomogeneitiees and and in a random potentiail whose velocity is governed by a Langevin equation, obtain some properties of the scaling-up process and relation between diffusion matriix and drift.
作者 王子亭
出处 《数学的实践与认识》 CSCD 北大核心 2001年第5期550-555,共6页 Mathematics in Practice and Theory
关键词 粒子系统 中心极限定理 尺度跃迁 随机介质 扩散过程 Einstein公式 LANGEVIN方程 interacting partical system central limit theorem scaling-up random medium
  • 相关文献

参考文献3

  • 1[1]Bert φKsendal. Stochastic Differential Equtions. Spring-Verlag World Publishing Corp,1989.
  • 2[2]Ioannis Karatzas, Steven E Shreve. Brownian Motionand Stochastic Calculus Springer-Verlag World Publishing Corp, 1988.
  • 3[3]DE Ma-si, Ferrari P, Goldstein S, Wick D. An invariance principe for Markov processes. Application to random motion in random enviroments, J Statist Phys, 1989,55: 787~856.

同被引文献12

  • 1李勇.一类平移不变无穷粒子反应扩散过程的遍历性[J].数学年刊(A辑),1995,1(2):223-229. 被引量:2
  • 2周宗林.关于一类非平衡交互作用粒子系统的相变[J].数学年刊(A辑),1996,1(3):301-310. 被引量:1
  • 3KOZLOV S M. The method of averaging and walks in inhomogeneous environments[J]. Russian Math Surveys, 1985, 40(2) : 73-145.
  • 4SIRI P. Asymptotic behaviour of a tagged particle in an inhomogeneous zero-range process[J]. Stochastic Process Ap- pl, 1998,77 (2) ; 139-154.
  • 5GRIGORESCU I. Self-diffusion for Brownian motions with local interaction[J]. Ann Probab, 1999,27(3):1208-1267.
  • 6ANSHELEVICH V V,KHANIN K M,SINAI Y G. Symmetric random walks in random environments [J]. Comm Math Phys, 1982,85 (3) :449-470.
  • 7KUNNEMANN R. The diffusion limit for reversible jump processes on Z^d with ergodic random bond conductivities [J]. Comm Math Phys, 1983,90(1): 27-68.
  • 8De MASI A,FERRARI P A ,GOLDSTEIN S,et al. An invariance principle for reversible Markov processes. Applica tions to random motions in random environments[J]. J Statist Phys, 1989,55(3/4): 787-855.
  • 9KIPNIS C,VARADHAN S R S. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions [J]. Comm Math Phys, 1986,104 (1) : 1-19.
  • 10STROOCK D W, ZHENG Wei-an. Markov chain approximations to symmetric diffusions [J]. Ann Inst Henri Poincare :Probab Statist, 1997,33 (5) :619-649.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部