摘要
以转子动力学和非线性动力学理论为基础 ,针对非线性转子 -轴承系统的具体特点 ,建立了采用短轴承模型的弹性转子 -轴承系统模型 ,并用数值积分和庞加莱映射方法对其在某些参数域中进行了非线性振动研究 ,得到了系统在某些参数域中的分叉图、庞加莱映射和随转速变化的 3维谱图 ,计算结果显示 ,系统有可能发生混沌运动。对系统动力学特性随某些参数变化时的非线性特性进行了分析 ,直观显示了参数变化对系统动力学特性的影响 ,为该类转子 -轴承系统的设计提供了参考。
Based on the characteristics of a nonlinear rotor-bearing system, the nonlinear vibration of an elastic rotor-bearing system on the assumption of short-bearing model is formulated. And its characteristics are studied in some parameter range on the basis of rotor dynamics and nonlinear dynamics theory with the Poincaré maps and numerical integral method in this paper. And the calculation result shows that may undergo chaotic motions. In several typical parameter regions the bifurcation diagrams, the Poincaré maps and the three dimensional spectral plot of the system are acquired with numerical integral method. The nonlinear behavior of the system is analyzed along with the changing of some parameters,the influence on the system is demonstrated. The analysis result of this paper provides a theoretical reference for designing and safely operating of this system.
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
2001年第11期1221-1224,共4页
China Mechanical Engineering
基金
国家自然科学基金资助重大项目 ( 19990 5 10 )
哈尔滨工业大学校基金资助项目 ( HIT.2 0 0 0 .75 )
关键词
叶轮机械
转子-轴承系统
非线性振动
混沌
turbine nonlinear rotor-bearing system nonlinear vibration chaos