摘要
运用Liapunov第二方法,研究了有常数放养率的食饵-捕食者相互作用系统{x↑.=f(x)-φ(x)τ(y)+H,y↑.=-eh(y)+Kh(y)φ(x)唯一正平衡点的稳定性。并利用Poincare-Bendixon环域定理、张芷芬唯一性定理及Hopf分支问题的Friedrich方法,论证了R2^+={(x,y):x>0,y>0}内极限环的存在唯一性及其稳定性。
By utilizing Liapunov’s second methods, we discussed steadiness of unique positive balanced points in the predator preg interacting system that buited foods have the constant breeding rate. This system is =f(x)-φ(x)τ(y)+H, =-eh(y)+Kh(y)φ(x).It is proved that the system existed an unique and steady limit cycle in R + 2={(x,y):x>0,y>0}.For this purpose, we made use of Poincare bendixin cycle field theorem and Zhang Zhifeng unique theorem.
出处
《北华大学学报(自然科学版)》
CAS
2000年第4X期287-292,共6页
Journal of Beihua University(Natural Science)
基金
吉林省教委基金项目!(吉教合字(99)第42号)