期刊文献+

嵌套循环算法的改进算法研究 被引量:1

Research on Optimized-algorithms of the Nested-loop Algorithm
原文传递
导出
摘要 为解决大型磁盘数据集上对象间语义贴近度的计算 ,在已有嵌套循环算法RNL的基础上提出了 2个改进算法 :基于三阵列的嵌套循环算法TRNL和基于四阵列的嵌套循环算法FRNL .形式讨论及实验证明 ,TRNL算法和FRNL算法比RNL算法效率高 ,其中FRNL算法效率最高 .最后分析了划分内存阵列的数目与时间效益的关系 . In order to solve calculating of semantic proximity between objects in large Datasets,two algorithms on the basis of the Nested-loop algorithm(RNL) are presented.One of them is nested-loop algorithm based on three arrays(TRNL),and the other one is nested-loop algorithm based on four arrays(FRNL).By discussing formally and experiment,executing times of the FRNL and the FRNL are more efficient.Of all,the efficiency of the FRNL is highest.Finally,we analyze the relations between time cost and arrays which have been divided.
出处 《云南大学学报(自然科学版)》 CAS CSCD 2001年第5期331-335,340,共6页 Journal of Yunnan University(Natural Sciences Edition)
基金 云南省自然科学基金资助项目 ( 1999F0 0 15M )
关键词 数据挖掘 大型磁盘数据集 三阵列嵌套循环算法TRNL 四阵列嵌套循环算法FRNL data mining the large dataset nested-loop algorithm(RNL) nested-loop algorithm based on three arrays(TRNL) nested-loop algorithm based on four arrays(FRNL)
  • 相关文献

参考文献4

二级参考文献18

  • 1洪家荣,丁明峰,李星原,王丽薇.一种新的决策树归纳学习算法[J].计算机学报,1995,18(6):470-474. 被引量:92
  • 2[1]AGRAWAL R,IMIELINSKI T,SWAMI A.Mining association rules between sets of items in large database[C].In Proc of the 1993 ACM SIGMOD Conference.Washington D C:ACM SIGMOD,1993.207—216.
  • 3[2]OZDEN B,RAMASWAMY S,SILBERSCHTAZ A.Cyclic association rules[C].In Proc of the 14th International Conference on Data Engineering.Orlando:Data Engineering Organization,1998.412—421.
  • 4[3]RAMASWAMY S,MAHAYANA S,SILBERSCHTAZ A.On the discovery of interesting patterns in association rules[C].In Proc of the 24th VLDB Conference.New York:Very Larg Data Base Endowment,1998.368—379.
  • 5[4]SRIKANT R,AGRAWAL R.Mining quantitative association rules in large relational tables[C].In Proc of the 1996 ACM SIGMOD Conference.Motorola Quebec Canada:ACM SIGMOD,1996.1—12.
  • 6[5]SRIKANT R,AGRAWAL R.Mining generalized association rules[C].In Proc of the 21st VLDB Conference.Zurich Switzerland:Very Larg Data Base Endowment,1995.407—419.
  • 7Liu W,Int J Uncertainty Fuzziness Knowledge Based Systems,1998年,6卷,5期,503页
  • 8Han J,Theoretical Computing Science,1994年,133期,361页
  • 9Han J,IEEE Trans Knowledge Data Engineering,1993年,5卷,1期,29页
  • 10Cai Y,Knowledge Discovery in Databases,1991年,213页

共引文献19

同被引文献16

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部