期刊文献+

非线性弹性杆内纵向波方程的孤立波解 被引量:3

Solitary Wave Solutions for Equations of Longitudinal Wave in A Nonlinear Elastic Rod
下载PDF
导出
摘要 广义 Korteweg- de Vries- Burgers方程ut+ un- 1 ux +μux xx =δux x和非线性 Pochhamm er- Chree方程utt- uttxx - uxx - 1p( up) x x =0分别描述了非线性弹性杆内纵向应变波和形变波 .本文利用待定系数法求得了它们的孤立波解 . Generalized Korteweg-de Vries-Burgers equationsu t+u n-1 u x+μu xxx =δu xx and nonlinear Pochhammer-Chree equationsu tt -u ttxx -u xx -1p(u p) xx =0have depicted strain wave and longitudinal deformation in a nonlinear elastic rod.Their solitary wave solutions are obtained by method of undetermined coefficient.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 2001年第3期101-103,共3页 Journal of Henan Normal University(Natural Science Edition)
关键词 非线性方程 孤立波解 应变波 形变波 待定系数法 非线性弹性杆 纵向波方程 nonlinear equations solitary wave solutions deformation wave strain wave method of undetermined coefficient
  • 相关文献

参考文献10

二级参考文献5

共引文献41

同被引文献12

  • 1Feng Kang, Qin Mengzhao, The symplectic methods for the computation of Hamiltonian equations, In:Zhu You-lan, eds. Proc of 1st Chinese Cong. On numerical Methods of PDE's, March 1986, Shanghai, Lecture notes in Math, Berlin: Springer, 1987, 1-37.
  • 2TH J Bridges, S Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Physics Letter A, 284:4-5(2001), 184-193.
  • 3TH J Bridges, Multi-symplectic structures and wave propagation, Math Proc Cam Phil Soc, 121 (1997), 147-190.
  • 4M B Abbott, D K Basco, Computational fluid dynamics, Longman Scientific & Technical, 1989.
  • 5S Reich, Multi-symplectic Runge-kutta methods for Hamiltonian wave equations, J Comput Phys, 157:5(2000), 473-499.
  • 6Marsden J E, Patrick G P, Shkoller S. Multisymplectic geometry, variational integrators and nonlinear PDEs[J].Comm Math Phys, 1998, 199:351-395
  • 7Bridges T J. Multi-symplectic structures and wave propagation[J]. Math Proc Cam Phil Soc, 1997, 121:147-190
  • 8Bridges T J, Reich S. Multi-symplectic integrators: Numerical Schemes for Hamiltonian PDEs that conserve symplecticity[J]. Physics Letter (A), 2001, 284(4-5): 184-193
  • 9Reich S. Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations[J]. J Comput Phys, 2000,157(5):473-499
  • 10Bridges T J. Multi-symplectic structures and wave propagation[J]. Math Proc Cam Phil Soc, 1997,121: 147-190 .

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部