期刊文献+

两相法和单相法在集团变分法中的应用 被引量:1

APPLICATION OF TWO-PHASE AND ONE-PHASE CAL- CULATION IN THE CLUSTER VARIATION METHOD
下载PDF
导出
摘要 本文提出了用于集团变分法中计算相平衡的两相法和计算失稳点的单相法.对于一级相变,两相法要求一种结构的对称群包含另一种结构的对称群,这样可以得到精度很高的相变点.一级相变的相变点和失稳点不同,在温度-化学势图和温度-组分图中,单相法得到的失稳点都滞后于两相法得到的相变点;随着变化步长的减小可以得到精确的失稳点.对于二级相变,相变点和失稳点相同,两种方法都可以得到相变点和失稳点.虽然在化学势变化步长很小时难以用单相法确切判断二级相变的失稳点,但在变化步长下是很小时,单相法已经可以给出足够精确的相变点. The two-phase method used in phase transformation point calculation, and the one-phase method used in spinodal calculation, are proposed for the cluster variation method calculation. For the first order transformation, the two-phase calculation needs that the symmetry group of one phase should contain that of the other phase, the transition point and the spinodal point are different, and the spinodal point obtained by the one-phase method appears later than the transition point obtained by the two-phase method in either temperature-chemical potential curve or temparature-constituent curve; and the accurate spinodal point can be obtained with small dimensionless chemical potential changing step. For the second order phase transformation, the transition point and the spinodal point are the same, and both can be obtained by either the two- or one-phase method. The spinodal point of good accuracy can be obtained with not so small dimensionless chemical potential changing step for the second order phase transformation.
作者 马钢 夏源明
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2001年第11期1147-1152,共6页 Acta Metallurgica Sinica
关键词 集团变分法 两相法 单相法 相平衡 相图 cluster variation method two-phase method one-phase method phase equilibrium
  • 相关文献

参考文献1

二级参考文献10

  • 1Golosov N S,Popov L E,Pudan L Ya. Journal of Physics and Chemistry of Solids . 1973
  • 2Inden G. Zeitschrift fur Metallkunde . 1977
  • 3Golosov N S,Tolstik A M. Journal of Physics and Chemistry of Solids . 1975
  • 4Mohri,T.,Ichikawa,Y.,Suzuki,T.Configurational Kinetics for Disorder-L12 Transition Studied by the Path Probability Method[].Journal of Alloys and Compounds.1997
  • 5Shinoda T,Hosoda H,Mishima Y. Materials Science and Engineering . 1995
  • 6Kikuchi R. The Journal of Chemical Physics . 1974
  • 7Kikuchi,R. Acta Materialia . 1977
  • 8Sanchez J M,De Fontaine D. Physical Review . 1980
  • 9Mohri T,Sanchez J M,De Fontaine D. Acta Materialia . 1985
  • 10Mohri T,Nakahara T,Takizawa S,Suzuki T. J AlloysCompd . 1995

共引文献2

同被引文献14

  • 1Mohri T. Thermal Expansion Calculated by Continuous Displacement Cluster Variation Method[J]. Materials Transactions, 2008, 49(11), 2515-2520.
  • 2Inden G, Schon C G. Thermodynamic self-consistency issues related to the Cluster Variation Method: The case of the BCC Cr-Fe (Chromium-Iron) system[J]. Calphadcomputer coupling of Phase Diagrams and Thermochemistry, 2008, 32(4): 661-668.
  • 3Kitashima T, Yokokawa T, Yeh AC, Harada, H. Analysis of element-content effects gamma/gamma ' interface on equilibrium segregation at in Ni-base superalloys using the cluster variation method[J].Intermetallics, 2008, 16(6): 779-784.
  • 4Keskin M, Canko O. Multicritical phase diagrams of the ferromagnetic spin-3/2 Blume-Emery-Griffiths model with repulsive biquadratic coupling including metastable phases: The cluster variation method and the path probability method with the point distribution[J]. Journal of Magnetism and Magnetic Materials, 2068, 320(1-2):8-24.
  • 5Albers CA, Heskes T, Kappen HJ. Haplotype inference in general pedigrees using the cluster variation method[J]. Genetics, 2007, 117(2), 1101-1116.
  • 6Barbe V, Nastar M. Split interstitials in an interacting bcc alloy. I. Extension of the cluster variation method[J]. Physicsal Review B, 2007, 76(5): 054205.
  • 7Yasuda M, Tanaka K. The relationship between Plefka's expansion and the cluster variation method[J]. Journal of the Physical Society of Japan,2006,75(8): 084006.
  • 8Nanu D E, Deng Y J, Bottger A J. Unified approach for cluster variation method calculations of phase diagrams in fcc substitutional alloys with interstitial species[J]. Physicsal Review B, 2006, 74(1):0114113.
  • 9Pelizzola A. Cluster variation method in statistical physics and probabilistic graphical models[J]. Journal of Physics A-Mathematical and General, 2005, 38(33), R309-R339.
  • 10Shang S, Bottger A. A combined cluster variation method and ab initio approach to the gamma-Fe[N]/gamma '-Fe4N1-x phase equilibrium[J]. ACTA Materialia, 2005, 53(2):255-264.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部