摘要
为了在竞争风险场合考虑生存函数 (或分布函数 )的估计问题 ,本文构造了竞争风险场合分布函数的乘积极限 (PL)型估计 .运用经验过程的逼近理论及Taylor展开方法 ,给出了估计在全直线上的弱一致收敛速度 ,并证明了估计的渐近正态性 .
In order to consider the estimator of survival function (or distribution function) under the competing risk case, the product limit estimator of a distribution function under competing risk case is introduced. The rate of weak uniform convergence of the PL type estimator over the whole line is given and asymptotic normality of the estimator is proved by the approximation of empirical process and Taylor expansion.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2001年第6期108-112,共5页
Journal of Southeast University:Natural Science Edition
关键词
竞争风险
乘积极限估计
一致收敛
渐近正态性
PL型估计
non parametric statistics
competing risk
product limit estimator
uniform convergence
asymptotic normality