摘要
柱布朗运动是布朗运动在无穷维空间上的一种重要实现。考虑一类实可分Hilbert空间上被无界算子扰动的关于柱布朗运动的随机发展系统的稳定性问题。运用线性算子半群理论给出了分别使得此系统稳定、使其L2 —连续发展解指数稳定及使其发展解指数稳定的状态反馈控制律 。
We consider stability of stochastic evolution system about cylindrical Brownian motion B(t), t≥0 on real decomposable Hilbert space:dx=(A+P) d t+Qu d t+G(x) d B(t),x(0)=x 0,t≥0. In this system, the infinitesimal generator A is perturbed by a family of unbounded operators p or p . Using semigroup theory of linear operators, it is shown that, under some certain assumptions, the state feedback control laws can be found which make this system stable uniformly with respect to the set p and its evolution solution or L 2 continuous evolution solution exponentially stable in the mean square sense uniformly with respect to the set p .
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2001年第6期104-107,共4页
Journal of Chongqing University
关键词
无界扰动算子族
随机发展系统
柱布朗运动
状态反馈控制律
HILBERT空间
稳定性
线性算子半群
exponentially stable
family of unbounded perturbed operators
stochastic evolution system
C 0 (contract) semigroup
cylindrical Brownian motion
state feedback control law