期刊文献+

信号盲分离的非线性主分量分析算法

Principal component analysis of blind signal separation with nonlinear approaches
下载PDF
导出
摘要 主分量分析是统计信号处理中常用的算法 ,将非线性引入主分量分析算法 ,可以完成对输入信号独立分量的分离 .分析认为现有的非线性主分量分析算法只能实现实数信号的分离 ,对复数信号无效 .通过对非线性函数进行修改 ,提出了一种非线性主分量分析复数算法 ,成功地实现了复数信号的盲分离 .文中还借助于计算机仿真 ,对实数和复数算法分离亚高斯和超高斯信号混合的特性进行了分析评价 . The independent source signals can be separated from their linear mixture by incorporating nonlinear function into a standard principal component analysis (PCA) which is a widely used technique in statistical signal processing. Some recent nonlinear PCA approaches to blind signal separation are reviewed in present paper. It is found that present nonlinear PCA is only valid to real valued signals but invalid to complex valued signal.With modifying the form of activation function, a class of complex nonlinear PCA algorithms which is successful to blind complex signals separation is proposed. Furthermore, the property for separating the mixture of sub-and super-Gaussian signals is analyzed and evaluated by computer simulation.
出处 《西安工业学院学报》 2001年第3期196-203,共8页 Journal of Xi'an Institute of Technology
基金 国家自然科学基金 6 0 0 72 0 5 2
关键词 独立分量分析 非线性主分量分析 亚高斯信号 超高斯信号 统计信号处理 信号盲分离 blind source separation independent component analysis nonlinear principal component analysis sub-Gaussian signals super-Gaussian signals
  • 相关文献

参考文献16

  • 1[1]JUTTEN C, HERAULT J. Blind separation of source, part Ⅰ: an adaptive algorithm based on neuromimetic architecture[J]. Signal Processing, 1991, 24: 1
  • 2[2]KARHUNEN J , JOUTSENSALO J. Representation and separation of signals using nonlinear PCA type learning[J]. Neural Networks, 1994, 7(2):113
  • 3[3]KARHUNEN J , JOUTSENSALO J. Generalizations of principal component analysis, optimization problems, and neural networks[J]. Neural Networks, 1995, 8(4): 549
  • 4[4]OJA E, KARHUNEN J, WANG L, et al. Principal and independent components in neural networks-recent developments[A]. Proc VII Italian workshop o4n neural nets, WIRN'95[C],Vietrisul Maro, Italy.1995.18
  • 5[5]OJA E. The nolinear PCA learning rule and signal separation-mathematical analysis[J]. Neural Computing, 1997, 17: 25
  • 6[6]HYVARINEN A. Survey on independent component analysis. Neural Computing Surveys, 1999,2: 94
  • 7[7]PAJUNEN PETLERI, KARHUNEN J. Least-squares methods for blind source separation based on nonlinear PCA[J]. Int Journal of Neural Systems, 1998, 8(5,6) : 601
  • 8[8]KARHUNEN J , OJA E, WANG L, et al . A class of neural networks for independent component analysis[J]. IEEE Trans on Neural Networks, 1997, 8(3): 486
  • 9[9]LEE TE-WON, GIROLAMI M, SEJNOWSKI T J. Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources[J]. Neural Computation, 1999, 11(2): 409
  • 10[10]HYVARINEN A , OJA E . Independent Component analysis by general non-linear Hebbian-like learning rules[J]. Signal Processing, 1998, 64: 301

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部