摘要
设G是一个n阶图,a和b是整数使得1≤a<b,设H是G的具有m条边的匹配,δ(G)是最小度,证明了:若δ(G)≥a+1,n≥2(a+b)(a+b-1)/b,并且对G的任意两个不相邻的点x和y都有|NG(x)∪y)|≥an/(a+b)+2,则G有[a,b]-因子F使得E(H)∩E(F)=φ。
Let G be a graph of order n ,and let aand bbe integers such that 1≤a<b.Let H be any matching of G wiht m edges,and δ(G) be the minimum degree.Then we prove that if δ(G)≥a+1,n≥2(a+b)(a+b-1)/b,and |N G(x)∪N G(y)|≥an/(a+b)+2 for any two non-adjacent vertices x and y of G,then G has an -factor F such that E(H)∩E(F)=.
作者
李建湘
LI Jian_xiang (Department of mathematics of Shaoyang College qiliping,Shaoyang ,Hunan ,422004)
出处
《邵阳高等专科学校学报》
2001年第3期167-169,共3页
Journal of Shaoyang College