期刊文献+

扭转问题中界面附近的边界层

Boundary layers near interfaces under torsion
原文传递
导出
摘要 基于经典的弹性理论分析 ,在剪切载荷作用下 ,异质材料的界面处存在转角的突变。根据偶应力理论 ,这一突变将导致偶应力趋于无穷大 ,显然这是不合理的结论。利用偶应力理论分析了含有界面的圆柱体的扭转问题 ,并由摄动方法给出了位移、转角和应力场的渐近解。在此基础上 ,分析了转动梯度对异质材料界面和固定边界性质的影响。分析结果表明 ,在材料界面和固定边界附近 ,存在一组边界效应解 ,它对经典的弹性理论解有可观的修正 ,修正的大小与界面两侧材料的性质有关。 Based on the classical elastic theory, the rotation angle on an interface between two mismatched materials is discontinuous when a shear stress is applied. In the light of the couple stress theory, this discontinuity would yield an infinite couple stress. To overcome this physically illogic conclusion, the couple stress theory is used to analyze the torsion problem of a cylinder with an interface. The fields of displacements, rotation angles, stresses, and couple stresses are given by using the perturbation method. Thereby, the effects of rotation gradients on the interface of heterogeneous materials and the property of fixed boundaries are analyzed. The results show that there are a group of boundary layer solutions near the interface or the fixed boundary, which have important adjustment to the results of the classical elastic theory depending on the properties of the materials besides the interface.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2001年第11期1-3,共3页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目 (19891180 ) 全国优秀博士学位论文作者专项基金项目
关键词 偶应力理论 界面 摄动方法 扭转 边界层 couple stress theory interface perturbation method
  • 相关文献

参考文献6

  • 1[1]Mindlin R D, Tiersten H F. Effects of couple-stress in linear elasticity [J]. Arch Rational Mech Anal, 1962, 16: 415-447.
  • 2[2]Mindlin R D. Second gradient of strain and surface tension in linear elasticity [J]. Int J Solids Struct, 1965, 1: 417-438.
  • 3[3]Mindlin R D. Micro-structure in linear elasticity [J]. Arch Rational Mech Anal, 1964, 16: 51-78.
  • 4[4]Ashby M F. The deformation of plastically non-homogeneous alloys [J]. Phil Mag, 1970, 21: 399-424.
  • 5[5]Bendes B M. Orszay S A. Advanced Mathematical Methods for Scientists and Engineers [M]. New York: McGraw-Hill, 1978.
  • 6[6]Nayfeh A H. Introduction to Perturbation Techniques [M]. New York : Wiley, 1981.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部