期刊文献+

复合材料中增强相形状对有效模量的影响(Ⅰ) 被引量:4

Effects of reinforcement shape on the effective moduli of composites (Ⅰ)
原文传递
导出
摘要 采用 Mori- Tanaka方法 ,研究了基体 /夹杂类复合材料中增强相形状对有效模量的影响。首先给出了在夹杂和基体均为各向异性的情况下 ,夹杂平行分布和随机取向分布时复合材料有效弹性模量的计算公式。进而比较了无限长的纤维、半径无限大的薄片以及椭球状夹杂等典型的增强相形状对弹性模量的影响规律。在夹杂平行分布时 ,薄片和纤维导致相同的最大弹性模量 ,而在取向随机分布时 ,薄片的增强效果更明显。长短轴之比小于 Mechanical properties such as strength and stiffness of composites show strong dependence on the shape of the reinforcing phase. By using the Mori Tanaka method and the Wapole's tensor calculation rules, the effective moduli are derived in explicit forms for some typical inclusions including fibers of infinite length, flakes of infinite radius, and spheroids, which may be aligned or uniformly distributed in orientation. The results are convenient for engineering applications.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2001年第11期8-10,14,共4页 Journal of Tsinghua University(Science and Technology)
基金 教育部跨世纪优秀人才基金 全国优秀博士学位论文作者专项基金项目
关键词 复合材料 细观力学 本构关系 增强相形状 MORI-TANAKA方法 composite micromechanics constitutive relation Mori Tanaka method
  • 相关文献

参考文献2

  • 1Feng Xiqiao,Chin Sci Bull,2001年,46卷,1130页
  • 2杨庆生,复合材料细观结构力学与设计,2000年

同被引文献21

  • 1黄永刚,黄克智,胡凯雄,A.Chandra.A UNIFIED ENERGY APPROACH TO A CLASS OF MICROMECHANICS MODELS FOR COMPOSITE MATERIALS[J].Acta Mechanica Sinica,1995,11(1):59-75. 被引量:8
  • 2Robinson I M, Robinson J M. The effect of fiber aspect ratio on the stiffness of discontinuous fiber reinforced composites [J]. Composites, 1994,25(7) :499 - 503.
  • 3Lee K Y, Paul D R. A model for composites containing three- dimensional ellipsoidal inclusions E J 1- Polymer, 2005, 46 : 9064 - 9080.
  • 4Huang H, Talreja R. Effects of void geometry on dastic properties of unidirectional fiber reinforced composites [J ]. Composites Science and Technology, 2005,65 : 1964 - 1981.
  • 5Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problemsEJ]. Mathematical Physical & Engineering Sciences, 1957,241 ( 1226 ) : 376 - 396.
  • 6Mori T, Tanaka K. Average stress in matrix and average energy of materials with misfitting inclusions E J ]. Acta Metall, 1973,21:571 - 574.
  • 7Zhao Y H, Weng J G. Plasticity of a two-phase composite with partially debonded inclusions[J ]. International Journal of Plasticity, 1996,12(6) :781 - 804.
  • 8Zheng J J, Li C Q. Three-dimensional aggregate density in concrete with wall effect[ J ]. ACI Materials Journal, 2002, 99(6):568-575.
  • 9Schlangen E. Experimental and numerical analysis of fracture processes in concrete[ M]. Delft: Delft University Press, 1993.
  • 10Zheng J J. Mesostructure of concrete-stereological analysis and some mechanical implications[ M]. Delft: Delft University Press,2000.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部