期刊文献+

复正交矩阵的实正交相抵标准形 被引量:2

Real Orthogonal Equivalence Canonical Form of Complex Orthogonal Matrix
下载PDF
导出
摘要 利用矩阵的奇异值分解及基本理论 ,文中给出复正交矩阵的实正交相抵标准形及其全系不变量 .即 :(1)设M =A +Bi∈En(C) (复正交阵 ) ,其中A ,B∈Rn×n.则存在Q ,R∈En(R) (实正交阵 ) ,使得QMR =diagσ1σ21- 1i-σ21- 1iσ1(1),… ,σ1σ21- 1i-σ21- 1iσ1(r1);… ;σk σ2 k- 1i-σ2 k- 1iσk (1),… ,σk σ2 k- 1i-σ2 k- 1iσk (rk);In- 2r ,其中σ1>σ2 >… >σk>1,r =r1+r2 +… +rk.(2 )二复正交矩阵实正交相抵之充要条件是它们的实部有完全相同的奇异值 . Using the singular value decomposition and basic theory of matrix,this paper gives the real orthogonal equivalence canonical form of complex orthogonal matrix,and a necessary and sufficient condition that matrices are real orthogonally equivalent.(1) Let M=A+Bi∈E n(C) (complex orthogonal matrices),where A,B∈R n×n ,then there exist Q,R∈E n(C) (real orthogonal matrices),such that QMR= diag σ 1σ 2 1-1i -σ 2 1-1iσ 1 (1) ,...,σ 1σ 2 1-1i -σ 2 1-1iσ 1 (r 1) ;...; σ kσ 2 k-1i -σ 2 k-1iσ k (1) ,...,σ kσ 2 k-1i -σ 2 k-1iσ k (r k) ;I n-2r where σ 1>σ 2>...>σ k>1,r=∑ki=1r i. (2)The necessary and sufficient condition of real orthogonal equivalence for two complex orthogonal matrices is that real parts have same singular values.
作者 张锦川
出处 《泉州师范学院学报》 2001年第4期1-4,共4页 Journal of Quanzhou Normal University
关键词 复正交阵 标准形 实正交相抵 奇异值 全系不变量 实斜对称阵 实定对称阵 complex orthogonal matrix canonical form real orthogonal equivalence singular value
  • 相关文献

参考文献4

  • 1D. Choudhury,R. A. Horn. An analog of the singular value decomposition for complex orthogonal equivalence[J]. Lin. Mul. Alg. ,1987,21:149- 162.
  • 2B. De Moor,H Zha. A tree of generalizations of the ordinary singular value decomposition[J]. Lin. Alg. Appl. ,1991, 147:469 -500.
  • 3R.A. Horn,C. R. Johnson. Matrix Analysis[M]. Cambridge:Cambridge University Press,1985.65-79,104-112,209 - 256,411 - 426.
  • 4R.A. Horn,C. R. Johnson. Topics in Matrix Analysis[M]. Cambridge:Cambridge University Press,1994. 144 - 162, 203 - 216

同被引文献27

  • 1王玺贞.具有斜循环矩阵的线性方程组的一种解法[J].华南师范大学学报(自然科学版),1993,25(3):102-108. 被引量:1
  • 2魏晓丽,富成华.准正交矩阵[J].辽宁师专学报(自然科学版),2001,3(3):3-5. 被引量:1
  • 3张可村.工程优化算法与分析[M].西安:西安交通大学出版社,1985..
  • 4程云鹏.矩阵论[M]:第2版[M].西安,西北工业大学出版社,2000..
  • 5JIANG Y L, WING O. Monotone waveform relaxation for nonlinear differential algebraic equations[J]. SIAM J Numer Anal ,2000,38(1):170-185.
  • 6ERDMAN D J,ROSE D J. Newton waveform relaxation techniques for tightly coupled systems[J].IEEE Trans on Computer-Aided Design , 1992,11(5) :598-606.
  • 7周立刚,苗建松,李新,丁炜.一种复正交空时分组编码矩阵的设计方法[J].电子与信息学报,2007,29(10):2422-2425. 被引量:1
  • 8周英.正交矩阵的一个性质及其应用[J].苏州大学学报:自然科学版,1987,3(1):28-35.
  • 9Didenko V D,Chernetskii V A.The Riemann boundary problem with a complex orthogonal matrix[J].Mathematical Notes of the Academy of Sciences of the USSR,1978,23(3):220-227.
  • 10Horn R A,Merino D I.The Jordan Canonical Forms of complex orthogonal and skew-symmetric matrices[J].Linear Algebra and Its Applications,1999,302:411-421.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部