摘要
1974年Enright^1提出并构造了一类含二阶导数项的k步k+2阶stiff稳定的多步方法。之后,一些作者在增大稳定域及提高精确度方面做了一些有益的工作。本文将对这类方法作一系统研究,在建立一些理论结果的同时,构造了一类k步2k+1阶或k步2k阶的stiff稳定的二阶导数方法,这些方法的稳定域比同阶的Enright方法大,从而更为适合于求解stiff方程。
Enright proposed and constructed a class of stiffly stable second derivative multistep methods with k-step(k+2)nd order in 1974. After that, some authors worked on improving accuracy and stability regions. This paper studies this class of methods systematically, develops some theoretical results and offers a class of stiffly stable second derivative multistep methods with k-step(2k+1)nd or (2k)nd order. These new methods possess far larger regions of absolute stability and higher order than that of Enright's and they suggest their use especially for solving initial value problems of a system of stiff ordinary differential equations.
出处
《南京大学学报(自然科学版)》
CAS
CSCD
1991年第4期791-803,共13页
Journal of Nanjing University(Natural Science)
关键词
Stiff方程组
数值分析
二阶导数法
stiff systems, second derivative multistep methods, numerical analysis