期刊文献+

混合遗传算法在柔性系统动态调度中的应用研究 被引量:7

A HYBRID GENETIC ALGORITHM APPROACH TO THE DYNAMIC SCHEDULING IN FMS
下载PDF
导出
摘要 本文研究了柔性制造系统实时生产环境下的动态调度问题 .提出了基于动态数据库技术的动态调度系统的框架结构 .动态数据库中存储着问题的数据结构 ,包含工件相关类与机器相关类信息 .动态数据库能够随着生产的进行及时进行更新 .扰动发生后 ,遗传算法根据动态数据库所提供的更新后的调度任务数据 ,快速产生新的优化调度方案 .通过在遗传算法中嵌入约束解决机制确保遗传算法适应约束的能力 ,从而提高算法的收敛速度与精度 . The FMS scheduling task requires scheduling a set of jobs on a finite set of resources according to the production plans to optimize some given objectives. The jobs to be scheduled together with machines and other resources are often taken as to be deterministic throughout the entire planning horizon. This paper studies the FMS real time dynamic scheduling problem. The proposed dynamic scheduling system consists of five modules. They are dynamic database management module, hybrid genetic algorithm module, new plan download module, static database module, and knowledge base module. Dynamic database stores the data structure of the problem including the information related to parts and machines. After disturbance occurs, dynamic database can update the scheduling task data quickly according to the current production status of the system. The algorithm module is the core of the dynamic scheduling system. It directly determines the response time of the system to the disturbance. Genetic algorithm is used here to generate initial schedule as well as new ones. Static database mainly contains GA parameters and the GA approximate scheduling computation time. The knowledge base stores a great deal of heuristic rules, system status information, and the knowledge representation between them. It is used to provide suitable simulation rules for the GA algorithm.
出处 《信息与控制》 CSCD 北大核心 2001年第5期392-397,共6页 Information and Control
基金 国家自然科学基金资助项目 ( No.5 98895 0 5 ) ( No.70 0 710 17)
关键词 动态调度 动态数据库 混合遗传算法 约束解决机制 dynamic scheduling, hybrid genetic algorithms, constraints handling scheme
  • 相关文献

参考文献1

  • 1Gen Mitsuo,Genetic Algorithms and Engineering Design,1996年

同被引文献61

  • 1吴智铭.高级Petri网及FMS的动态建模和仿真[J].高技术通讯,1996,6(3):32-35. 被引量:4
  • 2袁坤,朱剑英.一种求解多目标柔性Job Shop调度的改进遗传算法[J].中国机械工程,2007,18(2):156-160. 被引量:24
  • 3席卫东,乔兵,朱剑英.基于改进遗传算法的柔性作业车间调度[J].哈尔滨工业大学学报,2007,39(7):1151-1153. 被引量:13
  • 4Zribi N,Kamel AE,Borne P.Scheduling in a flexible job shop under machine availability constraints[J].APII-JESA Journal Europeen des Systemes Automatises,2007,41(6):651-671.
  • 5Guohui Zhang,Liang Gao,Yang Shi.An effective genetic algorithm for the flexible job-shop scheduling problem[J].Expert Systems with Applicatio ns,2011,4(38):3563-3573.
  • 6Kacem I.Genetic algorithm for the flexible jobshop scheduling problem[C],IEEE International Conference on Systems,Man and Cybernetics,OCT 05-08,WASHINGTON D.C.2003,1-5:3464-3469.
  • 7Ferrolho A,Crisostomo M.A hybrid and flexible genetic algorithm for the job-shop scheduling problem[C].IEEE International Symposium on Computational Intelligence in Robotics and Automation.IEEE Piscataway.NJ.USA Jacksonville.FI.USA,2007:421-426.
  • 8Chen Fangrou. Decentralized supply chain subject to information delays[J]. Management Science, 1999, 45(8):1076--1090.
  • 9Cachon Gerard P, Zipkin Paul H. Competitive and cooperative inventory policies in a two-stage supply chain[J]. Management Science, 1999, 45(7): 936--953.
  • 10Cachon Gerard P. Managing supply chain demand variability with scheduling ordering policies[J]. Management Science, 1999, 45(6) : 843--856.

引证文献7

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部