期刊文献+

两邻边铰支两邻边夹紧正交各向异性矩形板的中等大挠度 被引量:3

MODERATE LARGE DEFLECTION OF ORTHOTROPIC RECTANGULAR PLATES WITH TWO ADJACENT EDGES SIMPLY SUPPORTED AND THE OTHER TWO ADJACENT EDGES CLAMPED
下载PDF
导出
摘要 利用 Galerkin方法分析了 von- Karm an型两邻边铰支两邻边夹紧正交各向异性矩形板。所设的位移函数为梁振动函数 ,它不仅能精确地满足边界条件 ,而且具有正交的特性 ,从而把复杂的非齐次非线性偏微分方程组化为一组非线性代数方程组。通过非线性方程组的线性化和可调节参数的修正迭代解法找出问题的解。实践证明 ,梁振动函数的收敛很快 ,只须取出级数的前几项即可满足精度要求。 In the paper, von Karman type orthotropic rectangular plates with two adjacent edges simply supported and the other two adjacent edges clamped are analysed by using Galerkin method.The beam vibration functions are taken as displacement functions that may accurately satisfy the boundary conditions, and have orthogonality property.The governing nonlinear partial differential equations are reduced to an infinite set of systems of nonlinear algebraic equations containing Fourier coefficients which have been solved by linearizing iterative procedures. The series of beam vibration functions are rapidly converged. Only a few items of the series may meet the need of accuracy. Numerical results of deflection and stress are obtained for different composite materials.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2001年第4期103-107,共5页 Acta Materiae Compositae Sinica
基金 国家自然科学基金资助项目 ( 5 96 75 0 2 5 )
关键词 两邻边铰支两邻边夹紧 正交各向异性 几何非线性 代数方程组 矩形板 中等大挠度 复合材料 梁振动函数 two adjacent edges simply supported and the other two adjacent edges clamped orthotropic geometrically nonlinear algebraic equations
  • 相关文献

参考文献3

二级参考文献3

共引文献8

同被引文献50

  • 1罗加智,刘土光,张涛,易杏甫.各向同性轴对称复合圆板的三维线性分析[J].哈尔滨工程大学学报,2004,25(3):274-279. 被引量:2
  • 2杨加明,孙锁泰.用减少弯曲刚度法研究非对称复合材料层压板的弯曲[J].复合材料学报,1993,10(4):13-22. 被引量:5
  • 3符拉索夫 薛振东 朱世靖译.壳体的一般理论[M].北京:人民教育出版社,1960..
  • 4符拉索夫 薛振东 朱世靖译.壳体的一般理论[M].北京:人民教育出版社,1960..
  • 5S.Timoshenko and S.Woinowsky-Krieger,Theory of Plates and Shells[M],New York,McGraw-Hill(1959).
  • 6R.Szilard,Theory and Analysis of Plates[M],Prentice-Hall,(1974).
  • 7R.F.S.Hearmon,The frequency of flexural vibration of rectangular orthotropic plates with clamped or supported edges[J],J.of Appl.Mech.,1959,(12):537-540.
  • 8S.G.Lekhnitskii,Theory of elasticity of an anisotropic body[M],Moscow,Mir,(1981).
  • 9C.Y.Chia,Nonlinear Analysis of Plates[M],New York,McGraw-Hill,(1980).
  • 10E.Reissner,The effect of transverse shear deformation on the bending of elastic plates[J],J.of Appl.Mech.,1945,(12):69-77.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部