期刊文献+

多障碍环境中基于增强式学习的势场优化和机器人路径规划 被引量:7

Potential Field Optimization and Robot Path Planning in Multi-Obstacle Environment Based on Reinforcement Learning
下载PDF
导出
摘要 该文把增强式学习方法应用于多障碍环境中机器人路径规划 ,并将增强式学习和路径规划相结合 ,通过工作空间势场的自适应优化学习 ,实现机器人的全局路径规划 ,即得到从任何初始位置开始的最优路径。与传统的人工势场方法相比 ,该方法避免了势场中局部极小点所引起的陷阱区域 ,并且所得到的路径具有最优特性。计算机仿真实验结果表明 。 In this paper the reinforcement learning to robot path planning in complex environment of multiple obstacles is applied. An adaptive control strategy learning method is proposed. Reinforcement learning is an unsupervised learning method based on the reactive and feedback mechanism. In this paper the reinforcement learning and path planning are combined together. The optimal path from any initial position is obtained by optimizing the global potential field and control rules. Compared with traditional artificial potential field method, this method avoids irrelevant local minimal points, which can make the robot vibrate in a small local area. Furthermore, the path found is optimal. The computer simulation experiment result shows that this learning method can efficiently solve the robot path planning problem in multi obstacle environment.
出处 《青岛海洋大学学报(自然科学版)》 CSCD 北大核心 2001年第6期937-942,共6页 Journal of Ocean University of Qingdao
基金 高等学校重点实验室访问学者基金 青岛市科委课题资助
关键词 增强式学习 移动机器人 多障碍环境 人工势场 路径规划 reinforcement learning mobile robot multi obstacle environment artificial potential field path planning
  • 相关文献

参考文献2

二级参考文献1

共引文献41

同被引文献75

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部