摘要
作者讨论矩阵方程 ATX+ XTA=B。该方程在 Hamilton力学研究中有用。首先利用L yapunov方程证明了极小 Frobenius范数解的存在性和惟一性。然后用奇异值分解给出了求解最小范数解的一种方法。
This paper deals with the matrix equation A TX+X TA=B which resulted from Hamiltonian mechanics. By using Lyapunov theory, the existence of the minimal Frobenius norm solution is proved. Then, a method is presented based on the singular value decomposition to compute the minimal norm solution. Finally, both forward and backward perturbation bounds are obtained.
出处
《青岛海洋大学学报(自然科学版)》
CSCD
北大核心
2001年第6期955-959,共5页
Journal of Ocean University of Qingdao
基金
国家自然科学基金课题 ( 1 9871 0 4 3)资助