期刊文献+

一类食物链条系统的正周期解 被引量:2

A Positive Periodic Solution of a Food Chain System
下载PDF
导出
摘要 利用重合度理论中的延拓定理 ,得到一类食物链条系统正周期解存在的充分条件 . In this paper,by using the continuation theorem of coincidence degree theory,a sufficient condition is obtained for the existence of a positive periodic solution of a food chain system.
作者 向昭红
出处 《江西师范大学学报(自然科学版)》 CAS 2001年第4期342-347,共6页 Journal of Jiangxi Normal University(Natural Science Edition)
关键词 食物链条系统 正周期解 延拓定理 拓扑度理论 重合度理论 生物数学 food chain system positive periodic solution the continuation theorem of coincidence degree topological degree
  • 相关文献

参考文献5

  • 1[1]CHEN Lan-gun,CHEN Jian. Nonlinear dynanical system in biology[M]. Beijing: Scicnce Press, 1993.
  • 2[2]GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equations[M]. Berlin: Springer- Verlag,1977.
  • 3[3]MAWHIN J L. Topological degree nethods in nonlinear boundary value problems[ R]. CBMS Regional Conf Ser in Math,No.40,Amer Math Soc Providence,RI, 1979.
  • 4[4]LI Yong-kun. Periodic solution of a neutral delay equation[J] .J Math Anal Appl, 1997,214:11 - 21.
  • 5[5]LI Yong-kun. Periodic solutions of a periodic delay pyedator - preyr system[J]. Proc Amer Math Soc, 1999, 127:1 331 - 1 335.

同被引文献16

  • 1高建国.具有时滞和基于比率的一类捕食者-食饵系统全局周期解的存在性[J].生物数学学报,2005,20(3):315-320. 被引量:25
  • 2吴新民,李经文.一个具有时滞的广义的捕食者-食饵系统正周期解的存在性(英文)[J].黑龙江大学自然科学学报,2006,23(4):512-518. 被引量:1
  • 3张正球,王志成.一个具有收获率的广义时滞人口模型的多个正周期解[J].中国科学(A辑),2006,36(11):1279-1287. 被引量:3
  • 4Zhao K H, Ye Y. Four positive periodic solutions to a periodic Lotka - Volterra predator - prey system with harvesting terms [ J ]. Nonlinear Analysis : Real Word Applications ( 2009), doi: 10.1016/j. nonrwa. 2009.08. 001.
  • 5Maynard-Smith J. Models in ecology [M]. Cambridge: Cambridge University, 1974.
  • 6Chattopadhyay J. Effect of toxic substances on a two-species competitive system [J]. Ecological Modelling, 1996, 84(1/2/3): 287-289.
  • 7Mukhopadhyay A, Chattopadhyay J, Tapaswi P K. A delay dif- ferential equations model of plankton aUelopathy [J]. Math Bio- sci, 1998, 149(2): 167-189.
  • 8Tapaswi P K, Mukhopadhyay A. Effects of environmental fluc- tuation on plankton allelopathy [J]. J Math Biol, 1999, 39(1): 39-58.
  • 9Chattopadhyay J, Sarkar R R, Pal S. Mathematical modelling of harmful algal blooms supported by experimental findings [J]. Ecol Comp, 2004, 1(3): 225-235.
  • 10Pal S, Samrat Chatterjee, Krishna Pada Das, et al. Role of com- petition in phytoptankton population for the occurrence and con- trol of plankton bloom in the presence of environmental fluctua- tions [J]. Ecological Modeling, 2009, 220(2): 96-110.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部