期刊文献+

利用高斯分布模型研究多晶硅晶界电学特性 被引量:3

Study on Electrical Property at Grain Boundary by Gauss Distribution Model in Polycrystalline Silicon
下载PDF
导出
摘要 研究了多晶硅晶界的载流子输运过程和导电机制 ,建立了新的晶界结构模型和晶界势垒分布模型 .将晶界区域及其势垒的变化视为高斯分布 ,利用这个模型 ,给出了改善的电流 -电压特性方程 ,并用这个关系式来解释多晶硅的电学特性 .数值计算表明 ,多硅电阻率随势垒高度的增加而基本呈线性增加 .另外 ,电阻率 ρ随掺杂浓度的增加而减小 ,当掺杂剂浓度约为 1× 1 0 19cm-3 ,ρ和 ρgb下降最快 .且在晶粒尺寸为 1 0 2 nm范围内晶界的电阻率比晶粒的电阻率约大 2~ 3个数量级 .分析结果表明 ,晶界是高电阻区 ,晶界的这种精细分布描述 ,有助于进一步理解多晶硅的晶界特性 ,从而提高多晶硅太阳电池的光电转换效率 . The carrier transport and conductivity mechanism in the grain boundary (GB) of polysilicon were studied, the new models about the structure and the potential barrier distribution in GB were presented. The barrier variation in GB is considered as Gauss distribution. By the models, I V equation in GB is improved and applied to explain GB electric property in the polysilicon. The calculation shows that the resistivity ( ρ ) linearly increases with increasing the barrier height. Otherwise, ρ decreases with increasing the doping concentration ( N g), ρ drop percentage is maximum at N g=1×10 19 cm -3 . Furthermore, the resistivity of GB is larger by 2~3 magnitudes than that of the grain when the grain size is about 10 2nm. The result indicates that GB is a high resistivity region and this fine description contributes to the understanding of GB property; therefore, the efficiency of the polysilicon solar cell is improved.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2001年第6期813-816,共4页 Journal of Shanghai Jiaotong University
关键词 电学特性 高斯分布模型 多晶硅 晶界结构模型 晶界势垒分布模型 电阻率 electric property Gauss distribution model grain boundary(GB) polysilicon
  • 相关文献

参考文献3

  • 1舒启清,电子隧穿原理,1998年,32页
  • 2丘思畴,半导体表面与界面物理,1995年,205页
  • 3Yang E S,IEEE Trans Electron Devices,1981年,28卷,1131页

同被引文献23

  • 1罗绮雯,陈红雨,唐明成.冶金法提纯太阳能级硅材料的研究进展[J].中国有色冶金,2008,37(1):12-14. 被引量:11
  • 2孟志国,郭海成,吴春亚,王文,熊绍珍.125mm彩色AMOLED的多晶硅TFT基板[J].Journal of Semiconductors,2006,27(8):1514-1518. 被引量:6
  • 3刘晓彦,孙卫,关旭东,翟霞云,韩汝琦.Poly-Si TFT制备工艺[J].光电子技术,1997,17(1):5-8. 被引量:4
  • 4赵颖,熊绍珍,孟志国,代永平,周祯华,姚伦,张建军,孙钟林,徐温元.H处理对a-Si TFT矩阵性能的改善作用[J].Journal of Semiconductors,1997,18(1):58-60. 被引量:3
  • 5Kohter D, Raabe B, Braun S, et al. Upgraded metallurgieal grade silicon solar cells: A detailed material analysis[ A ]. 24th EU PVSEC [ C ], Hamburg, Germany, 2009, 1758-1761.
  • 6Pizzini S. Towards solar grade silicon: Challenges and benefits for low cost photovoltaics [ J ]. Solar Energy Materials & Solar Cells, 2010, 94(9) : 1528-1533.
  • 7De Wolf S, Szlufeik J, Delannoy Y, et al. Solar cells from upgraded metallurgical grade (UMG) and plasma purified UMG multicrystalline silicon substrates [ J ]. Solar Energy Materials & Solar Cells, 2002, 72 (1-4): 49-58.
  • 8Singh S N, Sharma S K, Singh P K, et al. A model of front-illuminated n^+ -p-p^+ high efficiency silicon solar cell[J]. IEEE Transactions on Electron Devices, 1992, 39(2) : 362-369.
  • 9Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells [ J ]. Journal of Applied Physics, 1961, 32(3) : 510-519.
  • 10Kotsovos K, Perraki V. Structure optimization according to a 3D model applied on epitaxial Si solar cells: A com- parative study [ J ]. Solar Energy Materials & Solar Cells, 2005, 89(2-3): 113-127.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部