期刊文献+

基于进化规划的多层前向网络结构优化

STRUCTURAL OPTIMIZATION OF MULTILAYER FEEDFORWARD NETWORKS BASED ON EVOLUTIONARY PROGRAMMING
下载PDF
导出
摘要 基于进化规划(EP)方法,该文提出了设计多层前向网络拓扑结构和权值分布的一种新算法—EPANN算法。EPANN算法能同时进化网络的结构和连接权值(包括阈值),在进化过程中,强调父代和子代之间的行为联结,结构变异既有结点删除,又有结点增加,不同于单纯的删除算法或构造算法,且结点删除总是先于结点增加,保证了网络规模尽可能小而泛化能力尽可能强。 Based on evolutionary programming, a novel algorithm named EPANN for designing the topology and weight distributions of feedforward networks is proposed in this paper. EPANN algorithm evolves network architectures and connection weights (including biases) simultaneously and emphasizes the behavioral links between parents and their offspring in evolution, such as weights training after each architectural mutation and node splitting. Unlike the pure constructive or pruning algorithm, EPANN's architectural mutations include both node deletion and node addition, and prefer node deletion to addition in order to encourage the network architecture as compact as possible and generalization ability as good as possible.
出处 《电子与信息学报》 EI CSCD 北大核心 2001年第12期1298-1302,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金 国家"863"计划资助项目
关键词 进化规划 网络设计 多层前向网络结构 神经网络 Evolutionary programming, Network design, EPANN algorithm
  • 相关文献

参考文献1

二级参考文献1

  • 1史忠植,神经计算,1993年,58页

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部