期刊文献+

求解复极点模型最优解的一种新方法 被引量:1

A NEW SOLUTION FOR COMPLEX POLE MODEL IN OPTIMIZATION
下载PDF
导出
摘要 该文给出了信号极点估计的非线性最小二乘求解方法。解的结构满足的最优化条件是充分而必要的,因而迭代收敛的结果是唯一而最优的。文中的数值举例说明了本文结论的正确性。 In this paper the nonlinear least squares solution for signal-pole estimation is offered. The condition of optimization contented in its structure is both sufficient and necessary, thus the point of convergence is sole.
作者 谢维波
出处 《电子与信息学报》 EI CSCD 北大核心 2001年第12期1311-1315,共5页 Journal of Electronics & Information Technology
关键词 信号估计 非线性最小二乘 复极点模型 最优解 Signal-pole, Prony method, Nonlinear least squares, Basic symmetry function
  • 相关文献

参考文献3

二级参考文献2

  • 1Hua Y B,IEEE Trans AP,1989年,37卷,2期,229页
  • 2高世伟,保铮.利用数据矩阵分解实现对空间相关信号源的超分辨处理[J]通信学报,1988(01).

共引文献9

同被引文献7

  • 1Carriere R, Moses RL. High resolution radar target modeling using a modified Prony estimator [J]. IEEE Trans on AP, 1992,40(1):13- 18.
  • 2Marple L, Brotherton T. Detection and classification of short duration underwater acoustic signals by Prony' s method [ A]. Proceedings of International Conference on Acoustics, Speech, and Signal Processing [ C]. San Diego, Canada 1991,2 : 1309 - 1312.
  • 3Paraskevas M, Tsoukalas D. A Prony method for high-quality audio coding [ A ]. Proceedings of International Conference on Acoustics, Speech, and Signal Processing [ C ]. Minneapolis, USA 1993,1:205 - 208.
  • 4Hua Y, Sarkar T K. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise [ J]. IEEE Trans Acoustics Speech Signal Processing, 1990,ASSP-38:814- 824.
  • 5Bresler Y, Macovski A. Exact maximum likelihood parameter estimation of superimposed exponential signals in noise [ J ]. IEEE Trans. Acoustics, Speech, Signal Processing, 1986, ASSP- 34:1081 - 1089.
  • 6McDonough R. N, Huggins W. H. Best least squares representation of signals by exponentials [ J ]. IEEE Trans on Automatic Control, 1968, AC-13 (4) : 408 - 412.
  • 7谢维波,林劲松.复指数信号模型非线性最小二乘解的几何结构及迭代算法[J].电子学报,2002,30(5):757-759. 被引量:5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部